SCHEME & SYLLABUS FOR MASTER OF TECHNOLOGY (M.TECH.) IN SOFTWARE ENGINEERING (SE) PROGRAM AT U.I.E.T. As per AICTE Model curriculum (Applicable w.e.f. session 2018-2019 in Phased Manner)

Scheme for the course of Master of Technology (M.Tech.) in Software Engineering (Credit Based)
(Applicable from session 2018-2019)
Samester-I

			1			JEI					1	
S. No.	Course No.	Subject	Tea Sc	achi hedu	ng ule	Hours/Week	Examination Schedule & Percentage Distribution				Duration of Exam (Hrs.)	Credit
			L	Т	Ρ		Major Test	Minor Test	Practical	Total		
1	MTSE- 101	Essentials of Software Engineering	3	0	0	3	60	40		100	3	3
2	MTSE- 103	Modeling and Simulation	3	0	0	3	60	40		100	3	3
3	*	Program Elective-I	3	0	0	3	60	40		100	3	3
4	**	Program Elective-II	3	0	0	3	60	40		100	3	3
5	MTSE- 117	Software Engineering Lab	0	0	4	4		40	60	100	2	2
6	MTSE- 119	Agile Software Engineering Lab	0	0	4	4		40	60	100	2	2
7	MTRM- 111	Research Methodology and IPR	2	0	0	2	60	40		100		2
8	***	Audit course-	2	0	0	2		100		100	3	
		Total				24	300	280	120	700	-	18

*	Programme Elective-I	**Programme Elective-II				
Course No.	Subject	Course No.	Subject			
MTSE-105	Software Project Management	MTSE-111	Software Reliability			
MTSE-107	Agile Software Process	MTSE-113	Software Agents			
MTSE-109	Software Process Maturity Model	MTSE-115	Human Interface System Design			

***Audit Course-I							
Course No.	Subject						
MTAD-101	English for Research Paper Writing						
MTAD-103	Disaster Management						
MTAD-105	Sanskrit for Technical Knowledge						
MTAD-107	Value Education						

Note: 1.The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

S. No.	Course No.	Subject	Te So	eachi ched	ng ule	Hours/Week	Exam Perc		Duration of Exam (Hrs.)	Credit		
			L	Т	Р		Major Test	Minor Test	Practical	Total		
1	MTSE-102	Software Risk Management	3	0	0	3	60	40		100	3	3
2	MTSE-104	Social Networks	3	0	0	3	60	40		100	3	3
3	*	Program Elective-III	3	0	0	3	60	40		100	3	3
4	**	Program Elective-IV	3	0	0	3	60	40		100	3	3
5	MTSE-118	Software Quality Models & Testing Lab	0		4	4		40	60	100	3	2
6	MTSE-120	Social Networks Lab	0		4	4		40	60	100	3	2
7	#MTSE- 122	Mini Project	0	0	4	4		100		100		2
8	***	Audit course-	2	0	0	2		100		100	3	
		Total				26	240	340	120	700	-	18

Scheme for the course of Master of Technology (M.Tech.) in Software Engineering Semester-II

*Progra	amme Elective -III	**Programme Elective-IV	
Course No.	Subject	Course No.	Subject
MTSE-106	Cloud Computing	MTSE-112	Object Oriented Programming
MTSE-108	Software Testing & Quality	MTSE-114	Pattern Oriented Software
	Assurance		Architecture
MTSE-110	Data Warehousing and Data	MTSE-116	Software Measurement and
	mining		Metrics

List of Audit Course-II (AC-II) for Second Semester						
Course No.	Subject					
MTAD-102	Constitution of India					
MTAD-104	Pedagogy Studies					
MTAD-106	Stress Management by Yoga					
MTAD-108	Personality Development through Life Enlightenment Skills.					

Note 1: After the second semester exams, the students are encouraged to go to Industrial Training/Internship for at least 6-8 weeks during the summer break with a specific objective for Dissertation Part–I (MTSE-207). The industrial Training/Internship would be evaluated as the part of the Dissertation–I (with the marks distribution as 40 marks for Industrial Training/Internship and 60 marks for Dissertation Part–I).

Note 2: The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

***Note 3: Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

#Note 4: Mini project: During this course the student will be able to understand the contemporary/emerging technologies for various processes and systems. During the semester, the students are required to search/gather the material/information on a specific topic, comprehend it and present/discuss the same in the class. He/she will be acquainted to share knowledge effectively in oral (seminar) and written form (formulate documents) in the form of report. The student will be evaluated on the basis of viva/ seminar (40 marks) and report (60 marks).

Semester: III

S. No.	Course No.	Subject	Te Sc	ach cheo	ing lule	Hours /Week	Exa Pe	amination S rcentage D	Schedule & istribution		Duration of Exam (Hrs.)	Credit
			L	Т	Ρ		Major Test	Minor Test	Practical	Total		
	*	Program Elective -V	3	0	0	3	60	40		100	3	3
1	**	Open Elective	3	0	0	3	60	40		100	3	3
2	MTSE- 207	Dissertation Part-I	0	0	20	20			100	100	3	10
		Total					120	80	100	300		16

Programme Electives -V	
Course No.	Subject
MTSE-201	Software Quality Management
MTSE-203	Language Technologies
MTSE-205	Personal Software Process

	**Open Elective									
1.	MTOE-201	Business Analytics								
2.	MTOE-203	Industrial Safety								
3.	MTOE-205	Operations Research								
4.	MTOE-207	Cost Management of Engineering Projects								
5.	MTOE-209	Composite Materials								
6.	MTOE-211	Waste to Energy								

Semester: IV

S. No.	Course No.	Subject	T∉ So	each ched	ing ule	Hours/Week	Exam Perce	ination S entage D	Schedule & Vistribution		Duration of Exam (Hrs.)	Credit
			L	Т	Р		Major test	Minor test	Practical	Total		
1	MTSE- 202	Dissertation Part-II	0	0	32	16	0	100	200	300	3	16
Total					•	16		100	200	300		16

Total Credits – 68

- **Note 1**: At the end of the second semester each student is required to do his/her Dissertation work in the identified area in consent of the Guide/Supervisor. Synopsis for the Dissertation Part-I is to be submitted within three weeks of the beginning of the Third Semester.
- Note 2: Each admitted student is required to submit the report of his/her Dissertation Part-I as per the schedule mentioned in Academic calendar for the corresponding academic session otherwise the Dissertation Part-II cannot be continued at any level.
- Note 3: Each admitted student is required to submit his/her final Dissertation Part-II as per the schedule mentioned in Academic calendar for the corresponding academic session only after the publication of two papers in a journal/International/National conference of repute like IEEE, Springer, Elsevier, ACM etc.
- **Note 4:** The course of program/open elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class.

MTSE-101			Essentia	Is of Software E	ngineering				
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time	
3	0	0	3	60	40	-	100	3 Hrs.	
Program	The main p	ourpose of this	course is f	to impart knowled	lge on the basic p	principles of	software		
Objective (PO) development life cycle.									
Course Outcomes (CO)									
After completio	n of course s	students will	be able to						
C01	To understan	d the software	life cycle m	nodels					
CO2	To understan	d the importar	nce of the so	oftware developm	ent process				
CO3	To understand the importance of modeling and modeling languages								
CO4	To design an	d develop corr	ect and rob	ust software prod	ucts				

Unit-1

Principles and motivation: History, Definitions, why engineered approach to software development, Software Development Process Models from the point of view of technical development and project management: Waterfall, Rapid Prototyping, Incremental Development, Spiral Model, Emphasis on computer assisted environment.

Software development methods: Formal, semi-formal and informal methods, Requirements elicitation, Requirement specification, Data, functions and event based modeling, Some of the popular methodologies such as Yourdon's SAD, SSADM etc., CASE tools classification, features, strengths and weaknesses, CASE: CASE standards.

Unit-2

Software Project Management: Principles of Software Project Management, Organizational and team structure, Project planning, Project Initiation and Project Termination, Technical, Quality and Management plans, Project Control, Project Estimation methods, Function points and COCOMO.

Unit-3

Software Quality Management: Quality Control, Quality Assurance and Quality Standards with emphasis on ISO 9000, Functions of Software QA organization dose in Project, Interaction with developers, Quality plans, Quality assurance towards quality improvement, Role of independent Verification and Validation, Total Quality Management, SEI maturity model, Software metrics.

Unit-4

Configuration Management: Need for Configuration Management, Configuration Management functions and activities, Configuration Management Techniques, Examples and Case studies.

Software Engineering Standards: Government Standards, IEEE (and other professional bodies) standards, Corporate Standards.

Reference books:

- 1. Eisner Howard, Computer Aided System Engineering, Prentice Hall, New Jersy.
- 2. Richard Fairly, Software Engineering Concept, Mc-Graw Hill, New York.
- 3. Pankaj Jalote, An Integrated Approach to Software Engineering, Narosa Pub. House, New Delhi.
- 4. Roger Pressmen, Software Engineering: A Practitioner's Approach McGraw Hill, New York.
- 5. Carlo Ghezzi, Mehdi Jazayeri, Dino Manlrioli, Fundamentals of Software Engineering Prentice Hall New Jersy.
- 6. Dong Bell, Ian Morrey, and Pugh, Software Engineering: A programming Approach Prentice Hall, New Jersy.
- 7. Kenneth Shere, Software Engineering and Management, Prentice-Hall, New Jersy.

MTSE-103			Мос	lelling and Simu	lation						
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time			
3	0	0	3	60	40	-	100	3 Hrs.			
Program	This course	e will look at pi	rofessional t	echniques for un	derstanding, asse	ssing and					
Objective (PO)	applying th	ring the software simulation models in software development systems.									
Course Outcomes (CO)											
After completio	n of course	students will	be able to								
C01	To appreciate	e and understa	and scientific	c concepts of Sof	tware and Hardwa	are design.					
CO2	To apply diffe	erent simulatio	n Models in	Software Develo	pment						
CO3	To emphasiz	e the Applicati	on of Simula	ation Models							

UNIT-1

Systems: Models types, principles used in modelling, system studies, interacting subsystems and example, simulation definition, examples, steps in computer simulation, advantages and disadvantages of simulation, simulation study, classification of simulation languages.

System Simulation:

Techniques of simulation, monte carlo method, comparision of simulation and analytical methods, numerical computation techniques for continuous and discrete models, distributed leg models, cobweb models.

UNIT-II

Continuous system simulation:

Continuous system models, differential equation, analog computer analog methods, digital analog simulators, CSSLS, CSMPIII language.

System Dynamics: Historical background, exponential, Growth and decay models, modified exponential growth models, logistic curves and generalization of growth models, system dynamics diagrams, dynamo language.

UNIT-III

Probability concepts in simulation:

Stochastic variables, discrete and continuous probability function, continuous uniform distributed and computer generation of random numbers, uniform random number generator, non uniform continuously distributed random numbers, rejection method.

Discrete system simulation: Discrete events, representation of time, generation of arrival patterns, simulation of telephone system, delayed calls, simulation programming tasks, gathering statistics, discrete simulation languages.

UNIT-IV

Object Oriented approach in simulation, simulation in C++, Introduction to GPSS, general description, action times, choice of paths, simulation of a manufacturing shop, facilities and storage, program control statements, priorities and parameters, numerical attributes, functions, simulation of a supermarket transfer models, GPSS model applied to any application, simulationprogramming techniques like entry types. **Reference books**

- 1. G.Gordan "System Simulation", 2ndEd, 2002 PHI.
- 2. T.A. Payer "Introduction to Simulation", McGraw Hill.
- 3. W.A. Spriet "Computer Oriented Modeling and Simulation".
- 4. Narsingh Deo "System Simulation with Digital Computers", PHI.
- 5. V. Rajaraman "Analog Simulation", PHI

6. Law & Kelton "Simulation Modelling and Analysis" 3 rd Ed., 2000, McGraw Hill.

MTSE-105			Softwa	are Project Mana	agement			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
3	0	0	3	60	40	-	100	3 Hrs.
Program	The course	e gives an ins	ight of the r	most commonly u	used software arc	hitecture an	d design	
Objective (PO)	patterns an	d their applica	tions	-			-	
	Course Outcomes (CO)							
After completio	n of course	students will	be able to					
CO1	To understan	d Software Pr	oject Models	s and Software M	lanagement Conce	epts.		
CO2	To understan	d the various i	nethods of (Cost Estimation.				
CO3	To Study abo	ut Software Q	uality Mana	gement.				
CO4	To understan	d Project Eval	uation.					

UNIT I - PROJECT CONCEPTS AND ITS MANAGEMENT

Project life cycle models-ISO 9001 model-Capability Maturity Model-Project Planning-Project tracking-Project closure. Evolution of Software Economics – Software Management Process Framework: Phases, Artifacts, Workflows, Checkpoints – Software Management Disciplines: Planning / Project Organization and Responsibilities / Automation / Project Control – Modern Project Profiles.

UNIT II - COST ESTIMATION

Problems in Software Estimation – Algorithmic Cost Estimation Process, Function Points, SLIM (Software Life cycle Management), COCOMO II (Constructive Cost Model) – Estimating Web Application Development – Concepts of Finance, Activity Based Costing and Economic Value Added (EVA) – Balanced Score Card.

UNIT III - OFTWARE QUALITY MANAGEMENT

Software Quality Factors – Software Quality Components – Software Quality Plan – Software Quality Metrics – Software Quality Costs – Software Quality Assurance Standard – Certification – Assessment.

UNIT IV - PROJECT EVALUATION AND EMERGING TRENDS

Strategic Assessment–Technical Assessment–Cost Benefit Analysis–Cash Flow Forecasting–Cost Benefit Evaluation Technique–Risk Evaluation–Software Effort Estimation. Emerging Trends: Import of the internet on project Management – people Focused Process Models.

REFERENCES

1. Ramesh Gopalaswamy, "Managing and global Software Projects", Tata McGraw Hill Tenth Reprint, 2011.

2. Roger S.Pressman, "Software Engineering- A Practitioner's Approach", 7th Edition ,McGraw Hill, 2010.

3. Daniel Galin, "Software Quality Assurance: from Theory to Implementation", Addison-Wesley, 2003.

4. Bob hughes and Mike Cotterell, "Software Project Management" second edition, 1999.

5. Royce, W. "Software Project Management: A Unified Framework", Addison- Wesley, 1998.

6. Demarco, T. and Lister, T. "Peopleware: Productive Projects and Teams, 2nd Ed.", Dorset House, 1999.

7. Fenton, N.E., and Pfleeger, S.L.. "Software Metrics: A Rigorous and Practical Approach, Revised" Brooks Cole, 1998.

8. Kaplan, R.S., Norton, D.P. "The Balanced Scorecard: Translating Strategy into Action", Harvard Business School Press, 1996.

9. Boehm, B. W. "Software Risk Management: Principles and Practices" in IEEE Software, January 1991, pp32-41.

10. Grant, J.L. "Foundations of Economic Value Added", John Wiley & Sons,

1997.

11. Cooper, R., "The Rise of Activity-Based Costing- PartOne: What is an Activity-Based Cost System" Journal of Cost Management, Vol.2, No.2(Summer 1988), pp.45 – 54.

MTSE-107			Ag	ile Software Pro	cess			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
	0	0	3	60	40	-	100	3 Hrs.
Program	This course	e imparts know	vledge to stu	udents in the bas	ic concepts of Agi	le Software	Process,	
Objective (PO)	methodolog	gy and its deve	elopment.					
			Course Out	comes (CO)				
After completio	of course students will be able to							
CO1	To understan	d the basic co	ncepts of A	gile Software Pro	cess.			
CO2	To gain know	ledge in the a	rea of variou	us Agile Methodol	ogies.			
CO3	To develop A	Agile Software	Process.					
CO4	To know the	principles of A	gile Testing.					

UNIT I-INTRODUCTION

Software is new product development – Iterative development – Risk-Driven and Client-Driven iterative planning – Time boxed iterative development – During the iteration, No changes from external stakeholders – Evolutionary and adaptive development - Evolutionary requirements analysis – Early "Top Ten" high-level requirements and skilful analysis – Evolutionary and adaptive planning – Incremental delivery – Evolutionary delivery – The most common mistake – Specific iterative and Evolutionary methods.

UNIT II-AGILE AND ITS SIGNIFICANCE

Agile development – Classification of methods – The agile manifesto and principles – Agile project management – Embrace communication and feedback – Simple practices and project tools – Empirical Vs defined and prescriptive process – Principle-based versus Rule-Based – Sustainable discipline: The human touch – Team as a complex adaptive system – Agile hype – Specific agile methods. The facts of change on software projects – Key motivations for iterative development – Meeting the requirements challenge iteratively – Problems with the waterfall. Research evidence – Early historical project evidence – Standards-Body evidence – Expert and thought leader evidence – A Business case for iterative development – The historical accident of waterfall validity.

UNIT III-AGILE METHODOLOGY

Method overview – Lifecycle – Work products, Roles and Practices values – Common mistakes and misunderstandings – Sample projects – Process mixtures – Adoption strategies – Fact versus fantasy – Strengths versus "Other" history.

UNIT IV-AGILE PRACTICING AND TESTING

Project management – Environment – Requirements – Test – The agile alliances – The manifesto – Supporting the values – Agile testing – Nine principles and six concrete practices for testing on agile teams.

REFERENCES

1. Elisabeth Hendrickson, "Agile Testing" Quality Tree Software Inc 2008.

2. Craig Larman "Agile and Iterative Development – A Manager's Guide"

Pearson Education – 2004.

3. Alistair "Agile Software Development series" Cockburn - 2001.

MTSE-109			Softwar	e Process Matu	rity Model			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
3	0	0	3	60	40	-	100	3 Hrs.
Program Objective (PO)	To know ab	oout the softwa	are process	and Software Pro	cess Maturity Mo	dels		
	Course Outcomes (CO)							
After completio	n of course :	students will	be able to					
C01	To study abo	ut various Sof	ware proces	ss maturity mode	ls			
CO2	To study abo	out how to ass	ess software	e process				
CO3	To know abo	out the key pro	cess areas	of the software pr	rocess			
CO4	To study abo	ut software im	provement s	sequences				

UNIT I - INTRODUCTION

Software Process - Software Maturity Framework – Software process Improvement – Process Maturity levels – Principles of Software process Change – Software Process Assessment

UNIT II - CMM

CMM Introduction – CMM Maturity Levels - Initial process- Repeatable Process – Defined Process – Managed Process – Optimizing Process.

UNIT III - TMM

Introduction to TMM – Structure of the TMM – Components of TMMi – Generic Goals and Generic Practices – Process areas for Generic practices – TMMi Maturity Levels – Initial – Managed – Defined – Management and Measurement – Optimization.

UNIT IV - AGILE MATURITY MODEL

Agile Software Development – Process Improvement framework for Agile Software Development – Intial Level – Explored Level – Defined level – Improved Level – Sustained Level - Software Process Improvement for Agile Software Development Practices.

REFERENCES

1. Watts S. Humphrey "Managing the Software Process", Pearson Education, 2008

2. Marry Beth Chrissis, Mike Konnard and Sandy Shrum, "CMMI : guidelines for Process Integration and Product Improvement", Addison Wesley, 3rd Edition, 2011.

3. Mark. C. Paulk, "CMM: Guidelines for Improving the Software Process" Addison-Wesley, 2011.

MTSE-111			5	Software Reliabi	lity						
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time			
3	0	0	3	60	40	-	100	3 Hrs.			
Program	This course	e will look at p	professional	techniques for u	inderstanding, ass	sessing and	applying				
Objective (PO)	the softwar	oftware reliability models in software development systems.									
Course Outcomes (CO)											
After completio	n of course :	students will	be able to								
C01	To appreciate	e and understa	and scientific	c concepts of Sof	tware and Hardwa	re Reliability	/ .				
CO2	To apply Soft	ware Reliabilit	y Growth M	odels in Software	e Development						
CO3	To emphasize	e the Application	on of Softwa	are Reliability Mo	dels						

UNIT I-SOFTWARE RELIABILITY MODELS

Introduction - Historical Perspective and Implementation, classification, limitations and issues, Exponential Failure Models – Jelinski-moranda model, Poisson, Musa, Exponential models, Weibull Model, Musa-okumoto Model, Bayseian Model – Littlewood verral Model, Phase Based Model

UNIT II-PREDICTION ANALYSIS

Model Disagreement and Inaccuracy – Short & Long Term Prediction, Model Accuracy, Analyzing Predictive Accuracy – Outcomes, PLR, U & Y Plot, Errors and Inaccuracy, Recalibration – Detecting Bias, Techniques, Power of Recalibration, Limitations in Present Techniques, Improvements.

UNIT III-THE OPERATIONAL PROFILE

Concepts and Development Procedures – Customer Type, User Type, System Mode, Functional and Operational Profile, Test Selection - Selecting Operations, Regression Test, Special Issues – Indirect Input Variables, Updating, Distributed system.

UNIT IV-TESTING FOR RELIABILITY MEASUREMENT

Software Testing – Types, White and Black Box, Operational Profiles – Difficulties, Estimating Reliability, Time/Structure based software reliability – Assumptions, Testing methods, Limits, Starvation, Coverage, Filtering, Microscopic Model of Software Risk.

REFERENCES

1. Patric D. T.O connor, "Practical Reliability Engineering", 4th Edition, John Wesley & sons, 2003.

2. John D. Musa, "Software Reliability Engineering", Tata McGraw Hill, 1999.

3. Michael Lyu, "*Handbook of Software Reliability Engineering*", IEEE Computer Society Press, ISBN: 0-07-039400- 8, 1996.

MTSE-113				Software Agent	S			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
3	0	0	3	60	40	-	100	3 Hrs.
Program Objective (PO)	This course	e provides a th	orough und	erstanding of age	ent related system	developmer	nt	
			Course Out	comes (CO)				
After completio	n of course :	students will	be able to					
CO1	To understan	d Agent devel	opment					
CO2	Gain Knowle	dge in Multi aç	jent and Inte	elligent agents				
CO3	To Understa	nd Agents and	security					
CO4	Gain Knowle	edge in Agent	Applications					

UNIT I-INTRODUCTION

The agent landscape – The smart agent framework: Introduction – Initial concepts – Entities-Objects – Agents – Autonomy – Tropistic agent – Specification structure of SMART. – Agent relationships – An operational analysis of Agent relationships.

UNIT II-SOCIOLOGICAL AGENTS

Sociological Agents - Autonomous Interaction - Contract Net as a global directed system – Computational Architecture for BDI agents – Evaluating social dependence networks – Normative agents.

UNIT III-INTELLIGENT AUTONOMOUS AGENTS AND COMMUNICATION

Intelligent Agents – Deductive Reasoning Agents – Practical reasoning agents - Reactive agents – Hybrid Agents – Understanding Each other – Communicating – Methodologies

UNIT IV-APPLICATIONS OF AGENTS

Multi Agent system: Theory approaches and NASA applications – Agent based control for multi-UAV information collection-Agent based decision support system for Glider pilots – Multi agent system in E- Health Territorial Emergencies – Software Agents for computer network security- Multi-Agent Systems, Ontologies and Negotiation for Dynamic Service Composition in Multi- Organizational Environmental Management.

REFERENCES

1. Mohammad Essaaidi, Maria Ganzha, and Marcin Paprzycki, "Software Agents, Agent Systems and Their Applications", IOS Press, 2012.

2. Mark d Inverno and Michael Luck, "Understanding Agent Systems", Springer, 2010.

3. Michael Wooldridge, "An Introduction to Multi Agent Systems", John Wiley & Sons Ltd., 2009.

4. Lin Padgham, Michael Winikoff, "Developing Intelligent Agent Systems: A Practical Guide", John Wiley & Sons Ltd., 2004.

5. Bradshaw, "Software Agents", MIT Press, 1997.

6. Richard Murch, Tony Johnson, "Intelligent Software Agents", Prentice Hall, 2000.

MTSE-115			Human	Interface Syste	m Design			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
3	0	0	3	60	40	-	100	3 Hrs.
Program	This course	e on user Inter	face Design	provides a basic	understanding of	f interface de	sign and	
Objective (PO)	principles.		-		-		-	
Course Outcomes (CO)								
After completio	n of course	students will	be able to					
CO1	Students lear	rn about the de	esign proces	s management				
CO2	To understan	d about Intera	ction devices	s and windows s	trategies			
CO3	To understan	d about how to	o Manage Vi	rtual Environmer	nts			

UNIT I-INTRODUCTION

Goals of System Engineering – Goals of User Interface Design – Motivations of Human factors in Design – High Level Theories –Object-Action Interface Design - Three Principles – Guidelines for Data Display and Data Entry

UNIT II-MANAGING DESIGN PROCESS

Introduction- Organizational Design to Support Usability – The Three Pillars of Design- Development Methodologies-Ethnographic Observation – Participating Design- Scenario Development- Social Impact Statement for Early Design – Legal Issues- Reviews – Usability Testing and laboratories- Surveys- Acceptance tests – Evaluation during Active use-Specification Methods- Interface – Building Tools- Evaluation and Critiquing tools

UNIT III-MANIPULATION AND VIRTUAL ENVIRONMENTS

Introduction-Examples of Direct Manipulation Systems –Explanation of Direct Manipulation- Visual Thinking and Icons – Direct manipulation Programming – Home Automation- Remote Direct manipulation- Virtual Environments- Task

UNIT IV-WINDOWS STRATEGIES AND INFORMATION SEARCH

Introduction- Individual Widow Design- Multiple Window Design- Coordination by Tightly – Coupled Widow- Image Browsing- Personal Role Management and Elastic Windows – Goals of Cooperation – Asynchronous Interaction –

Synchronous Distributed – Face to Face- Applying Computer Supported Cooperative Work to Education – Database query and phrase search in Textual documents – Multimedia Documents Searches – Information Visualization –

Advance Filtering Hypertext and Hypermedia – World Wide Web- Genres and Goals and Designers – Users and their tasks – Object Action Interface Model for Web site Design

REFERENCE

1. Alan Dix et al, " *Human - Computer Interaction* ", Pearson , 2010.

2. Ben Shneiderman, "*Designing the User Interface*", 4th Edition, Pearson, 2010.

3. Dr. Jonathan Lazar, Dr. Jinjuan Heidi Feng, Dr. Harry Hochheiser, "Research

Methods in Human Computer Interaction" – John Wiley 2010.

4. Wilbert O. Galiz, "*The Essential guide to User Interface Design*", Wiley Dreamtech, 2009.

5. Jef Raskin , "The Human Interface ", Addison – Wesley – 2008.

MTRM-111			Rese	arch Methodolog	y and IPR			
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	
2	0	0	2	60	40	-	100	
Program Objective	To enable st	udents to Res	earch Metho	odology and IPR	for further researcl	h work and inv	estment in	
(PO)	R & D whic	h leads to cre	eation of ne	w and better pro	ducts, and in turn	brings about,	economic	
	growth and s	social benefits						
Course Outcomes (CO)								
CO1	Understand	research prob	lem formulat	tion.				
CO2	Analyze rese	earch related i	nformation					
CO3	Understand	that today's w	orld is contro	olled by Computer	, Information Techr	hology, but tom	orrow	
	world will be	ruled by ideas	s, concept, a	ind creativity.				
CO4	Understandi	ng that when I	PR would ta	ke such importan	t place in growth of	f individuals &	nation, it is	
	needless to	emphasise the	e need of info	ormation about In	tellectual Property	Right to be pro	omoted	
	among stude	ents in general	& engineer	ing in particular.				

Unit 1:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2:

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit 3:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 4:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 ndEdition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

MTSE-117			Sof	tware Engineeri	ng Lab							
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time					
0	0	0 4 2 60 40 100 3 Hrs.										
Program Objective (PO)	This Softwa velopment a gineering.	This Software Laboratory focuses on the software engineering methodologies for project de- velopment and to gain knowledge about open source tools for Computer Aided Software En- gineering.										
			Course O	utcomes (CO)								
CO1	To develop t	est cases for a	ny problem									
CO2	Use open so	urce case tools	s to develop s	software.								
CO3	Analyze and	design softwa	e requireme	nts in efficient ma	nner.							

List of Practical

SOFTWARE REQUIRED:

Open source Tools: StarUML / UMLGraph / Topcased/ Argo UML

Prepare the following documents for each experiment and develop the software using software engineering methodology.

- 1. **Problem Analysis and Project Planning** -Thorough study of the problem –Identify Project scope, Objectives and Infrastructure.
- 2. **Software Requirement Analysis -** Describe the individual Phases/modules of the project and Identify deliverables.
- 3. **Data Modeling -** Use work products data dictionary, use case diagrams and activity diagrams, build and test class diagrams, sequence diagrams and add interface to class diagrams.
- 4. **Software Development and Debugging** implement the design by coding
- 5. **Software Testing** Prepare test plan, perform validation testing, coverage analysis, memory leaks, develop test case hierarchy, Site check and site monitor.

Case Studies:

Academic domain

- 1. Course Registration System
- 2. Student marks analysing system

Railway domain

- 3. Online ticket reservation system
- 4. Platform assignment system for the trains in a railway station

Medicine domain

- 5. Expert system to prescribe the medicines for the given symptoms
- 6. Remote computer monitoring

Finance domain

- 7. ATM system
 - 8. Stock maintenance

Human Resource management

- 9. Quiz System
- 10. E-mail Client system.

MTSE-119			Agile	Software Engine	ering Lab					
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			
Program Objective (PO)	This Softwa Computer S	are Laborator cience & Eng	y focuses of ineering and	on to analyze, d d multidisciplinar	esign and provid y problems.	e optimal s	olution for			
Course Outcomes (CO)										
CO1	To Apply the specialization	To Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.								
CO2	To Design so	olutions for con	nplex engine	ering problems						
CO3	To Create, s tools	select, and ap	oly appropria	ate techniques, re	esources, and moc	lern enginee	ring and IT			
CO4	To demonstr	rate the knowle	dge of and n	eed for sustainabl	e development.					

List of practical

1. Understand the background and driving forces for taking an Agile Approach to Software Development. Study the Important Characteristics that make agile approach best suited for Software Development.

- 2. Understand the business value of adopting agile approach.
- 3. Study the Agile Process Examples
 - a) SCRUMb) FDDc) Lean software development
 - d) XP
- 3. Understand agile development practices using SCRUM
- 4. Drive Development with Unit Test using Test Driven Development.
- 5. Apply Design principle and Refactoring to achieve agility
- 6. To study automated build tool.
- 7. To study version control tool.
- 8. To study Continuous Integration tool.
- 9. Perform Testing activities within an agile project.

MTSE-102			Softv	vare Risk Manag	gement			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
3	0	0	3	60	40	-	100	3 Hrs.
Program Objective (PO	The goal of principles a	of this course and the proces	is to enga s of designi	age students in ng and implemen	active discovery ting a risk manage	of risk man ement progra	lagement am.	
Course Outcomes (CO)								
After completio	n of course	students will	be able to					
C01	To understan	ids fundament	als of Risk N	lanagement Proc	Cess.			
CO2	To learn Risk	Management	Infrastructu	re process.				
CO3	To learn appl	ications of Ris	k Managem	ent.				

UNIT-1

Introduction to Software Risk Management: P212 Success Formula: Major Factors in Risk Management Capability, People, Process, Infrastructure, Implementation, Risk Management Roadmap.

UNIT-2

Risk Management Process: Identity Risk, Analyze Risk, Plan Risk, Resolve Risk.

UNIT-3

Risk Management Infrastructure: Develop policy, Define standard process, Train Risk Technology, Verify Compliance, Improve Practice.

UNIT-4

Risk Management Implementation: Establish Initiative, Develop Plan, Tailor Standard Process, Assess Risk, Control Risk. People in Crisis and Control Problem, Mitigation, Prevention, Anticipation, Opportuninty.

Reference Books:

- 1. Elaine M. Hall, Managing Risk: Methods for Software Systems Development, The SEI Series in Software Engineering, Addison Welsey, Masschachusetts.
- 2. Down. Alex, Michael Coleman. And Peter Absolon. Risk Management For Software Projects, McGraw-Hill, New York.
- 3. Charette. Robert N, Application Strategies for Risk Analysis, McGraw Hill, New York.
- 4. Grey. Stephen, Practical Risk Assessment for Project Management. Chichester, John Wiley & Sons. New York.
- 5. Glendon. A and Alan Waring, Managing Risk. International Thomson Business & COMPUTER Press, New York.
- 6. Jones.Capres. Assessment and Control of Software, Prentice Hll Press, New Jersey.

MTSE-104			Social	Networks					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total			
3	0	0	3	60	40	100			
Program	This emerging and	his emerging and innovative field will provide the insight into latest communication techniques used in							
Objective	the online social ne	tworks for ider	ntifying and repr	esenting the hidden relat	tionships, tracking the	e flow of			
(PO)	information and to	recognize dat	ta patterns in s	ocial networks by using	graph, matrix, relation	onships,			
	clustering, and equi	valence betwe	en users.						
		Co	urse Outcomes	(CO)					
CO1	To understand the	o understand the essentials of social networks by learning different types of entities and relationships							
	as nodes, edges w	ithin the graph	and represent	these information as rela	ational data to determ	nine the			
	relative importance	of a vertex to f	find the design le	evels					
CO2	To explore the det	ailed explanat	tion of data ge	neralization and mining	from Twitter, Facebo	ook and			
	LinkedIn in well info	rmed and effic	cient manner.	·					
CO3	To describe the se	mantic web u	using mining as	sociations, correlations,	classification, betwee	enness,			
	centrality, equivalen	ce relation, ce	entralization, clu	stering coefficient and str	uctural cohesion to g	enerate			
	visualizations and p	erform empirio	al investigations	of network data.	Ū				
CO4	To interpret and syn	thesize the re	sults with respec	ct to collated datasets by	using structural equiv	/alence,			
	automorphic equiva	lence and reg	ular equivalence	for interpreting quality fa	actors and mining of c	complex			
	type of data to exec	ute better reco	ommendation.		Ũ	•			

Unit: I: Social Networks and Related Concepts

Introduction to Social Networks: Introduction, uses, examples and types of social networks, Social and economic networks, Opportunities and challenges in social networks, Social structure in social networks, Properties of social networks, algorithmic and economic aspects of social networks

Social Network Data: Nodes, Edges, Relationship, Graphs, Samples and Boundaries, Formal methods, Adjacency Matrix for undirected and directed networked graphs and using matrices to represent social relations, Random graphs, Properties of random graphs, Percolations, Branching processes, Growing spanning tree in random graphs.

Level in Social Networks: Ego networks, partial networks, complete or global networks, social networks methods including binary or valued, directed or undirected.

Unit: II Mining the Social Web

Mining Twitter: Fundamental Twitter Terminology, creating a Twitter API Connection, Exploring Trending Topics, searching for Tweets, extracting Tweets entities, analyzing Tweets and Tweet entities with frequency analysis, computing the lexical diversity of Tweets, Examining patterns in Retweets, Visualizing frequency data with histograms.

Mining Facebook: Understanding the social graph API, Understanding the open graph protocol, Analyzing social graph connections

Mining LinkedIn: Making LinkedIn API requests, Downloading LinkedIn connections as a CSV file, Clustering, normalizing data for analysis, measuring similarity, and clustering algorithms.

Unit: III Mining Web pages and Semantic Web

Mining Web pages: Scraping, Parsing and Crawling the Web, Discovering semantics by decoding syntax, Entity-Centric analysis: A paradigm shift, Quality of analytics for processing human language data.

Mining the Semantically Marked-Up Web: Microformats: Easy-to-implement Metadata, Semantics markup to semantic Web: A brief interlude, The semantic Web: An evolutionary revolution.

Social Network Analysis: Introduction, History, Metrics in social network analysis (Betweenness, Centrality, Equivalence relation, Centralization, Clustering coefficient and Structural cohesion).

Unit IV: Equivalence in Social Networks

Structural equivalence, Automorphic equivalence and Regular equivalence

Text Books:

- 1. Matthew A. Russell, "Mining the Social Web", O'Reilly and SPD, Second edition New Delhi, 2013.
- 2. Hanneman, R. A., & Riddle, M., "Introduction to social network methods, Riverside, California: University of California, Riverside. Available at: http://faculty.ucr.edu/~hanneman/nettext/.
- 3. "Social network analysis: Theory and applications". A free, Wiki Book available at: http://train.ed.psu.edu/WFED-543/SocNet_TheoryApp.pdf.

Reference Books:

- 1. Lon Safko, "The Social Media Bible: Tactics, Tools, and Strategies for Business Success", Wiley 3rd Ed., 2012.
- 2. Peter K Ryan, "Social Networking", Rosen Publishing Group, 2011.
- 3. John Scott, Peter J. Carrington, "Social Network Analysis", SAGE Publishing Ltd., 2011.

MTSE-106				Cloud Computir	ng					
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time		
3	0	0	3	60	40	-	100	3 Hrs.		
Program	To provide	a comprehens	sive introduc	tion to cloud com	puting and about	cloud				
Objective (PO)	Services	ervices								
			Course Out	comes (CO)						
After completio	fter completion of course students will be able to									
CO1	To understan	d Cloud Comp	outing basics	s and its models.						
CO2	To learn the	fundamentals	of Data Cer	nters.						
CO3	To understar	nd the Archited	ture of Data	Centers and De	sign Principles					
CO4	To understar	nd the Security	/ aspects an	d security frame	vork.					

UNIT I-INTRODUCTION

Cloud Computing Introduction, From, Collaboration to cloud, Working of cloud computing, pros and cons, benefits, developing cloud computing services, Cloud service development, discovering cloud services.

UNIT II-CLOUD COMPUTING FOR EVERYONE

Centralizing email communications, cloud computing for community, collaborating on schedules, collaborating on group projects and events, cloud computing for corporation, mapping schedules managing projects, presenting on road.

UNIT III-USING CLOUD SERVICES

Collaborating on calendars, Schedules and task management, exploring on line scheduling and planning, collaborating on event management, collaborating on contact management, collaborating on project management, collaborating on word processing, spreadsheets, and databases.

UNIT IV-OUTSIDE THE CLOUD

Evaluating web mail services, Evaluating instant messaging, Evaluating web conference tools, creating groups on social networks, Evaluating on line groupware, collaborating via blogs and wikis

Storing and Sharing: Understanding cloud storage, evaluating on line file storage, exploring on line book marking services, exploring on line photo editing applications, exploring photo sharing communities, controlling it with web based desktops. **REFERENCES**

1. Michael Miller, "Cloud Computing", Pearson Education, New Delhi, 2009.

2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", McGraw Hill, 2009.

3. Mauricio Arregoces, Maurizio Portolani, "Data Center Fundamentals", Cisco Press, 2004.

4. Scott Lowe, Jason W, Mc. Carty and Mathew K. Johnson, "VMware, Vsphere 4 Administration, Instant Reference", Published by Sybex, 2009.

5. George Reese, "Cloud Application Architectures Building Applications and Infrastructure in the Cloud", O'Reilly Media, 2009.

6. Grantt Sauls "Introduction to Data Centers", Certified Data Centers Specialist, Tutorial.

7. Brendan O'Brien, Alberto Rodriguez, Stephen Sutherland and Mark Wheatley, "Server Virtualization Software", Tutorial, 2009.

MTSE-108			Software ⁻	Testing & Quality	Assurance			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time
3	0	0	3	60	40	-	100	3 Hrs.
Program Objective (PO)	The purpo introductior realities of fundamenta testing, Co documenta subject foc	se of this count of Bug , ca f software tea als, under the compatibility tea tion, Testing f uses on the tea	urse is to pr use of Bug sting. This study of ty esting, Fore for software st planning	resents the know , how it effect o subject also gi pes of testing thi sign language te e security, Web s and quality assur	ledge about Testi n cost of project, ves the knowled is subject enlighte esting, Usability ite testing and m ance.	ng backgrou role of ST ge softward en the Con testing, Tes lore. At the	und such LC cycle e testing figuration sting the end this	
			Course Out	tcomes (CO)				
After completion	n of course	students will	be able to					
CO1	To discuss so	oftware testing	background	d.				
CO2	To introduce	software testir	ng technique	es.				
CO3	lo explain dif	fferent types o	f testing to u	understand realist	ic problem.			
CO4	To create aw	areness about	the proces	s part as per as s	oftware testing is o	concern.		

UNIT I-INTRODUCTION TO SOFTWARE TESTING

Introduction – s/w testing background - What is a bug? Why do bugs occur? The cost of bugs. Goals of a software tester. Characteristics of s/w tester. Software development process- product component, software project staff, software development lifecycle model. The realities of s/w testing – testing axioms, s/w testing terms and definitions, Software Testing Life Cycle(STLC).

UNIT II- S/W TESTING FUNDAMENTALS

S/w testing fundamentals- Examining the specifications - Black box and white box testing, Static and dynamic testing, Static black box testing, Performing a high level review of the specification, low level specification test techniques. Testing the s/w with blinders on – Dynamic black box testing, Test to pass and test to fail, Equivalence partitioning, data testing, State testing, Other black box test techniques. Examining the code – Static white box testing, Formal review, Coding standards and guidelines, Generic code review checklist. Testing the software with X-ray glasses – Dynamic white box testing, Verses debugging testing the pieces

UNIT III TYPES OF TESTING

Configuration testing, Compatibility testing, Foreign language testing, Usability testing, Testing the documentation, Testing for software security. Web site testing, Automated testing and test tools- Benefits of automation and tools, various test tools, Software test automation, Random testing. Bug bashes and beta testing – Having other people test your s/w, Test sharing, Beta testing, Outsourcing your testing.

Performance Testing – Introduction, Benefits of performance testing. Types of performance testing Tools for performance Testing, Process for performance testing, challenges.

UNIT IV-TEST PLANNING AND QUALITY ASSURANCE

Planning the test – Goal of test planning, Various test planning topics, Writing and tracking test cases- Goal of test case planning, Test case planning overview, Test case organization and tracking, Reporting what you find - Getting the bug fixed, Isolating and replacing bugs, Bug's lifecycle, Bug tracking system, Measuring the success, Software quality assurance- Quality is free, Testing and quality assurance in the work place, Test management and organizational structures, capability maturity model (CMM), ISO 9000 Test Metrics and Measurement – Test Defect Metrics.

TEXT BOOKS:

- 1. Ron Patton, "Software Testing" SAMS Publishing
- 2. Marnei L. Hutcheson "Software Testing Fundamentals: Methods and Metrics" WILEY Pub.

REFERENCE BOOKS:

- 1. Pressman "Software Engineering" McGraw-Hill publications.
- 2. Strinivasan Desikan and Gopal swami Ramesh, Software Testing Principles and Practices, Pearsons.

MTSE-110			Data War	ehousing and D	ata Mining				
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time	
3	0	0	3	60	40	-	100	3 Hrs.	
Program	This course	e enables to u	nderstand th	e concepts of Da	ita Warehousing a	nd Data Min	ing.		
Objective (PO)									
		(Course Out	comes (CO)					
After completion of course students will be able to									
C01	To learn the f	undamentals of	of designing	a large-scale dat	ta warehouse usin	g relational	technolog	gies	
CO2	To understar	nd the Data W	arehouse ar	nd OLAP Technol	ogy in Data Mining)			
CO3	To study the	Mining Associ	ation Rules	in Large Databas	ses, Classification				
CO4	To know Clus	ster Analysis a	nd its Applic	ation Trends in D	ata Mining.				

UNIT I-DATA WAREHOUSING AND BUSINESS ANALYSIS

Data Warehousing and Business Analysis: - Data warehousing Components – Building a Data warehouse – Mapping the Data Warehouse to a Multiprocessor Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools – Metadata – reporting – Query tools and Applications – Online Analytical Processing (OLAP) – OLAP and Multidimensional Data Analysis.

UNIT II-DATA MINING

Data Mining: - Data Mining Functionalities – Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation. Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association Rules – Association Mining to Correlation Analysis – Constraint-Based Association Mining.

UNIT III-CLASSIFICATION AND PREDICTION

Classification and Prediction: - Issues Regarding Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section.

UNIT IV-APPLICATIONS OF DATA MINING

Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web. **REFERENCES**

1. Jiawei Han and Micheline Kamber "Data Mining Concepts and Techniques" Second Edition, Elsevier, Reprinted 2008.

2. Sam Anahory & Dennis Murray, "Data Warehousing in the real world", Pearson Education Ltd, 2011.

3. Alex Berson and Stephen J. Smith "Data Warehousing, Data Mining & OLAP", Tata McGraw – Hill Edition, Tenth Reprint 2007.

4. K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2006.

5. Gupta G. K. "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.

6. Pang-Ning Tan, Michael Steinbach and Vipin Kumar "Introduction to Data Mining", Pearson Education, 2007.

7. Jiawei Han & Micheline Kamber "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers, Elsevier,2nd Edition, 2006.

MTSE-112			Objec	t Oriented Progr	amming					
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time		
3	0	0	3	60	40	-	100	3 Hrs.		
Program Objective (PO)	The course	purse provide insight knowledge about programming language (C++ and JAVA)								
		Course Outcomes (CO)								
After completior	n of course s	of course students will be able to								
CO1	To learn the f	arn the fundamentals of Object Oriented Programming								
CO2	lo understan	d the concept	s of Classes	& Objects in C+-	+ and Java					
CO3	lo understan	d the concept	of static and	d dynamic polymo	orphism in C++and	d Java.				
CO4	To understan	d the concept	of streams	in C++ and Java.						

UNIT I-INTRODUCTION TO OOP

Overview of C++ - classes - structures - union - friend function - friend class -inline function - constructors – static members - scope resolution operator - passing objects to functions - function returning objects -Arrays - pointers - this pointer - references - dynamic memory allocation

UNIT II-OVERLOADING & INHERITANCE

Function overloading - default arguments - overloading constructors - pointers to functions Operator overloading - member operator function - friend operator function - type conversion - inheritance - types of inheritance - virtual base class - polymorphism - virtual function.

UNIT III-TEMPLATES & EXCEPTION

Class templates and generic classes - function templates and generic functions -- exception handling - derived class exception - exception handling functions - Streams - formatted I/O with its class functions and manipulators - creating own manipulators - file I/O - conversion functions- standard template library.

UNIT IV-INTRODUCTION FOR JAVA

JAVA Basics: Importance and features of java- Modifiers- Access Controls-Data types- Expressions-Declarations-Statements- classes and objects and Control Structures-Program Structures-String handling-Packages-Interfaces-Working with java.util Package- Garbage Collection-Object Class - Exception Handling, I/O and JDBC: Exception Handling: Fundamentals exception types- uncaught exceptions throw- throw final- built in exception- creating your own exceptions. **REFERENCES**

- 1. Balagurusamy E, "Object Oriented Programming with C++", 4/E, TMG, 2011.
- 2. Hubbard, "Programming with C++", 3/e, Schaum Outline Series, TMH, 2010.
- 3. Thomas Wu- "An Introduction to Object Oriented Programming with Java Special" Indian Edition 5th 2010.
- 4. Balagurusamy E, "Programming with Java: A Primer", 4th Edition, Tata Mcgraw Hill, 2009.

MTSE-114			Pattern Ori	ented Software	Architecture					
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time		
3	0	0	3	60	40	-	100	3 Hrs.		
Program	The course	e gives an ins	ight of the n	nost commonly i	used software arc	hitecture an	d design			
Objective (PO)	patterns an	atterns and their applications								
Course Outcomes (CO)										
After completio	n of course	students will	be able to							
CO1	The students	get basic kno	wledge of pa	atterns and desci	ription of patterns					
CO2	To understan	understand basic architectural patterns.								
CO3	To get an ins	ight on the dea	sign patterns	s and mining.						

UNIT I-INTRODUCTION TO SOFTWARE ARCHITECTURE

Introduction – Software architecture – An engineering discipline for software - Architectural Styles – Pipes and filters – Layered Systems - Black board – Repositories - Process control - Distributed system – Interactive system – Adaptive system

UNIT II-DESIGN PATTERNS & PATTERN SYSTEM

Introduction to patterns – Pattern category – Relationship between patterns –Pattern Description – Patterns software architecture -Structural decomposition Organization of work – Access control – Management and Communication –Idioms, Pattern system – Pattern Classification – Pattern Selection –implementation – Evolution – Patterns in Software architecture – Non –functionalproperties – Techniques of Software architecture.

UNIT III-COMMUNITY, MINING, CONCURRENT & NETWORKED

Roots – Community – Pattern Mining - Organizing and Indexing – Methods andtools – Algorithm – Data Structures and Patterns – Formalizing Patterns, Concurrent and Networked Objects, Service Access and Configuration Patterns

UNIT IV-EVENT HANDLING & SYNCHRONIZATION PATTERNS

Event Handling Patterns – Reactor, Proactor, Asyn Completion Tokens, Acceptor- Connector, Synchronization Patterns – Locking – Scoped, Strategized, Thread - safe Interface, Double-Checked Locking Optimization.

REFERENCES

1. Frank Buschmann, Kelvin Henney & Douglas Schimdt, "Pattern-Oriented Software Architecture - A System of Patterns", Volume 1, Wiley, 2007.

2. Frank Buschmann, Kelvin Henney & Douglas Schimdt, "Pattern-Oriented Software Architecture – Pattern for Concurrent and Networked Objects", Volume 2, Wiley, 2000.

3. Mary Shaw, David Garlan, "Software architecture perspectives on a Emerging Dicipline", EEE, PH1, 1996.

MTSE-116			Software	Measurement a	Ind Metrics					
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time		
3	0	0	3	60	40	-	100	3 Hrs.		
Program Objective (PO)	The purpos software m	e purpose of this course is to provide the knowledge about Software Metrics, Essentials of tware metrics and practical knowledge to assess software. Course Outcomes (CO)								
Course Outcomes (CO)										
After completion	n of course s	students will	be able to	•						
CO1	To provide a	solid backgrou	ind knowled	lge about softwar	e Metrics.					
CO2	To educate v	arious metrics	and models	s to assess softwa	are.					
CO3	To provide ha	ands on experi	ence to use	and implement r	netrics.					

UNIT I-THE HISTORY AND EVOLUTION OF SOFTWARE METRICS

Evolution of the software industry and evolution of software measurements – The cost of counting function point metrics – The paradox of reversed productivity for high-Level languages- The Varieties of functional metrics – Variations in application size and productivity rates – Future Technical Developments in Functional Metrics- Software measures and metrics not based on function points.

UNIT II-MEASURING SOFTWARE QUALITY

Quality control and international competition – Defining quality for measurement and estimation – Five steps to software quality control- Measuring software defect removal- Measuring Defect removal efficiency – Measuring the costs of defect removal – Evaluating defect prevention methods – Measuring customer reported defects- Measuring invalid defects, Duplicate defects and special cases-Reliability Models - The Rayleigh Model- Reliability Growth Models.

UNIT III-PROCESS METRICS

In-Process Metrics for Software Testing - Test Progress S Curve - Testing Defect Arrivals Over Time - Product Size Over Time - CPU Utilization - Effort/Outcome Model. Complexity Metrics and Models - Lines of Code - Halstead's Software Science - Cyclomatic Complexity. - Syntactic Constructs - Structure Metrics.

Metrics for Object-Oriented Projects - Concepts and Constructs - Design and Complexity Metrics - Lorenz Metrics and Rules of Thumb - CK OO Metrics Suite - Productivity Metrics.

UNIT IV-MECHANICS OF MEASUREMENT

Software Assessments – Software Baselines – Software Benchmarks- What a Baseline analysis covers – Developing or Acquiring a baseline data collection Instrument – Administering the data collection questionnaire – Analysis and aggregation of the Baseline data. Measuring and Analyzing Customer Satisfaction - Surveys - Data Collection - Sampling Methods - Analyzing Satisfaction Data. Conducting In-Process Quality Assessments - Preparation - Evaluation - Quantitative Data - Qualitative Data - Evaluation Criteria - Overall Assessment.

REFERENCES

1. Caper Jones, "Applied Software Measurement: Global Analysis of Productivity and Quality", Third Edition, McGraw Hill Companies, 2008.

2. Stephen H. Kan, "Metrics and Models in Software Quality Engineering", Addison Wesley, 2011.

3. Mark Lorenz, Jeff Kidd, "Object-Oriented Software Metrics", Prentice Hall, 2000.

4. Naresh Chauhan, "Software Testing Principles and Practices", Oxford University Press, 2010.

5. Ravindranath Pandian C., "Software Metrics A Guide to planning, Analysis, and Application", Auerbach, First Indian Reprint, 2011.

MTSE-118			Softwa	re Quality Model	s & Testing Lab					
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			
Program Ob-	This Softwa	his Software Laboratory focuses on test case generation on testing different kinds of software								
jective (PO)	and to provi	and to provide the in-depth coverage of software quality models and software testing strategies.								
	Course Outcomes (CO)									
CO1	To develop t	est cases for a	ny problem							
CO2	To pursue te	sting on any le	vel of softwa	re design by using	g different testing s	trategies				
CO3	CO3 Create a test plan document of real time applications.									
CO4	To apply test	ting tools for de	esigning the	test case to test th	e real time applica	tion.				
Casa Ctudy 4.1	Muite the test	ana a fan flea	In a set of t							

Case Study 1: Write the test cases for the largest of three number based on:

- Boundary value analysis test
- Robustness based testing
- Equivalence class partitioning test
- Decision table based test

Case Study 2: Cause Effect Graph Testing for a Triangle Program-Perform cause effect graph testing to find a set of test cases for the following program specification: Write a program that takes three positive integers as input and determine if they represent three sides of a triangle, and if they do, indicate what type of triangle it is. To be more specific, it should read three integers and set a flag as follows:

If they represent a scalene triangle, set it to 1.

If they represent an isosceles triangle, set it to 2.

If they represent an equilateral triangle, set it to 3.

If they do not represent a triangle, set it to 4.

Case Study 3: Boundary Value Analysis for a Software Unit-The following is a specification for a software unit. The unit computes the average of 25 floating point numbers that lie on or between bounding values which are positive values from 1.0 (lowest allowed boundary value) to 5000.0 (highest allowed boundary value). The bounding values and the numbers to average are inputs to the unit. The upper bound must be greater than the lower bound. If an invalid set of values is input for the boundaries an error message appears and the user is reported. If the boundary values are valid the unit computes the sum and the average of the numbers on and within the bounds. The average and sum are output by the unit, as well as the total number of inputs that lie within the boundaries. Derive a set of equivalence classes for the averaging unit using the specification, and complement the classes using boundary value analysis. Be sure to identify valid and invalid classes. Design a set of test cases for the unit using your equivalence classes and boundary values. For each test case, specify the equivalence classes and boundaries. Implement this module in the programming language of your choice. Run the module with your test cases and record the actual outputs. Save an uncorrected version of the program for future use. **Case Study 4:** Write the test cases for any known application (e.g. banking application) using

I) Basis path testing

II) Component testing

III) Data flow analysis test

Case Study 5: Create a test plan document for any application (e.g. Library Management System)

Case Study 6: Model Based Testing-Design and develop a scientific calculator program using various GUI components and events. Build the test model for the same. Determine the inputs that can be given to the model.

Calculate expected output for the model. Run the test cases. Compare the actual output with the expected output. Any model-based technique can be used for building the test model.

Case Study 7: Study and implementation of

- Mutation test
- Slice based test

Case Study 8: Introduction to any two open source testing tool:

- Study of any testing tool (e.g. Win runner)
- Study of any web testing tool (e.g. Selenium)
- Study of any bug tracking tool (e.g. Bugzilla, bugbit)
- Study of any test management tool (e.g. Test Director)
- Study of any open source-testing tool (e.g. Test Link)

Case Study 9: Web Application Testing for Student Grade System-With educational organizations under increasing pressure to improve their performance to secure funding for future provision of programmes, it is vital that they have accurate, up-to-date information. For this reason, they have MIS systems to record and track student enrolment and results on completion of a learning programme. In this way they can monitor achievement statistics. All student assignment work is marked and recorded by individual module tutors using a spreadsheet, or similar, of their own design. In the computing department these results are input into a master spreadsheet to track a student's overall progress throughout their programme of study. This is then made available to students through the web portal used in college. Perform web application testing for this scenario.

MTSE-120				Social Network	is Lab					
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			
Program Objective (PO)	This Software Laboratory focuses on accessing the dataset from social networks and then apply- ing machine learning techniques, data cleaning and visualization of data in real time environ- ments using Python programming and NLTK									
Course Outco	omes (CO)									
CO1	To access t	he data from s	ocial networ	ks						
CO2	To deign m	achine learning	g modules fo	or efficient syster	n					
CO3	Create the	algorithms for	accessing S	ocial Media and	data cleaning					
CO4	To apply te	sting tools for v	visualization	of data in real tir	me application.					

List of practical

- 1. Write a python program to remove an item from tuple and merge three dictionaries.
- 2. Write a python program to construct pyramids of stars (*) and numbers using nested for loop.
- 3. Write a python function to check whether a number is perfect or not and use filter function to print vowels from a given list.
- 4. Write a python program to estimate coefficients of an equation using linear regression model.
- 5. Write a python program to predict gender of a person if heigth, weight and shoe size are given using any four supervised learning algorithms.
- 6. Write a python program to find noun, verb and adjective in a given sentence.
- 7. Write a python program to calculate frequency of each word in a file after removing stopwords from it.
- 8. Write a program to for analyzing the behaviour (i.e. check whether a tweet is of positive, negative, or compound nature) of tweets and plot the results.
- 9. Write a program to sort the list of numbers using shell sort.
- 10. Write a python program to predict gender of a person from his/her name.
- 11. Write a python program to make a prediction about a movie from its review.
- 12. Write a program to plot the image in PNG format using matplotlib for average, max, and min of the data taken from a CSV file.
- 13. Write a program for classifying the text using NLTK.
- 14. Write a python program to guess behavior of a person.
- 15. Write a python program to print trending and common trends tweets in world, us and india.
- 16. Write a python program to use hashtag as basis of search query to fetch some tweets for further analysis.
- 17. Write a python program extract twitter entities such as hashtags, screen names.
- 18. Write a python program to clean any given dataset.
- 19 Write a python program to visualize a data using histogram, boxplot and scatter plot matrix.
- 20. Write a program for sentiment analysis of tweets (i.e. polarity and subjectivity).

MTSE-201			Softwa	are Quality Mana	agement				
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time	
3	0	0	3	60	40	-	100	3 Hrs.	
Program	This course	e covers the pr	inciples of s	oftware developr	ment emphasizing				
Objective (PO)	processes	ocesses and activities of quality assurance.							
		(Course Out	comes (CO)					
After completion of course students will be able to									
C01	The student i	must relate to	quality assu	rance plan					
CO2	The students	s must apply q	uality assura	ance tools & tech	iniques in their pro	oject			
CO3	To learn abou	ut standards a	nd certificati	ons					
CO4	To describe	procedures an	d work instr	uctions in softwa	re organizations				

UNIT I-INTRODUCTION

The Software Quality Challenge - Software Quality Factors - Components of the Software Quality Assurance System. Pre-Project Software Quality Components - Contract Review - Development and Quality Plans

UNIT II-SOFTWARE QUALITY ASSURANCE COMPONENTS IN THE PROJECT LIFE CYCLE

Integrating Quality Activities in the Project Life Cycle – Reviews - Software Testing – Strategies - Software Testing – Implementation - Assuring the Quality of Software Maintenance - Assuring The Quality of External Participants' Parts – Case Tools and their Affect on Software Quality.

UNIT III-SOFTWARE QUALITY INFRASTRUCTURE COMPONENTS

Procedures and Work Instructions - Supporting Quality Devices - Staff Training, Instructing and Certification - Preventive and Corrective Actions – Configuration Management - Documentation and Quality Records Controls

UNIT IV-SOFTWARE QUALITY MANAGEMENT COMPONENTS

Project Progress Control- Components, Internal & External Participants, Progress control regimes, Computerized tools, Software Quality Metrics – Objective, Classification, Process & Product Metrics, Implementation & Limitation of Software Metrics - Software Quality Costs – Objective, Classification Model of cost, Extended Model and Applications.

REFERENCES

1. Daniel Galin, "Software Quality Assurance: From Theory to Implementation", Pearson Addison-Wesley, 2012.

2. Roger S. Pressman, "Software Engineering-A Practitioner's Approach", McGraw Hill pub.2010.

3. Allen Gilles "Software quality: Theory and management", International Thomson, Computer press 1997.

4. Stephen H.Kan, "Metrics and models in software quality Engineering", Addison – Wesley 2003.

5. Humphrey Watts, "Managing the Software Process" Addison Wesley, 1986.

MTSE-203			Lar	nguage Technol	ogies				
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time	
3	0	0	3	60	40	-	100	3 Hrs.	
Program	This course	e enables to u	nderstand th	ne importance an	d the benefits of s	oftware cont	figuration		
Objective (PO)	and change	nd change management.							
			Course Out	comes (CO)					
After completion of course students will be able to									
CO1	To learn the b	pasic concepts	of natural l	anguage process	ing				
CO2	To study the	different techn	iques involv	ed with information	on retrieval				
CO3	To learn abou	ut text mining							
CO4	To study the	different scena	rios and fut	ure directions					

UNIT I-INTRODUCTION

Natural Language Processing – Linguistic Background- Spoken language input and output Technologies – Written language Input - Mathematical Methods - Statistical Modeling and Classification Finite State methods

UNIT II-INFORMATION RETRIEVAL

Information Retrieval architecture - Indexing- Storage – Compression Techniques – Retrieval Approaches – Evaluation - Search engines- commercial search engine features- comparison- performance measures – Document Processing – NLP based Information Retrieval – Information Extraction.

UNIT III-TEXT MINING

Categorization – Extraction based Categorization- Clustering- Hierarchical Clustering- Document Classification and routing- finding and organizing answers from Text search – use of categories and clusters for organizing retrieval results – Text Categorization and efficient Summarization using Lexical Chains – Pattern Extraction.

UNIT IV-APPLICATIONS

Machine Translation – Transfer Metaphor - Interlingua and Statistical Approaches - Discourse Processing – Dialog and Conversational Agents – Natural Language Generation – Surface Realization and Discourse Planning.

Note for paper setter: Nine questions will be set in all. Question No. 1, which will be objective/ short answer type covering the entire syllabus, will be compulsory. The remaining eight questions will be set section-wise, with two questions from each unit. The candidate will be required to attempt FIVE questions in all with Q.1 (compulsory) and four other questions, selecting one question from each unit.

REFERENCES

1. Daniel Jurafsky and James H. martin, "Speech and Language Processing", Pearson Prentice Hall; 2 edition, 2008.

2. Ron Cole, J.Mariani, et.al "Survey of the State of the Art in Human Language Technology", Cambridge University Press, 2007.

3. Michael W. Berry "Survey of Text Mining: Culstering, Classification and Retrieval", Springer Verlag, 2003.

4. Christopher D.Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing ", MIT Press, 2000.

MTSE-205			Per	rsonal Software	Process					
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Practical	Total	Time		
3	0	0	3	60	40	-	100	3 Hrs.		
Program	To learn ab	pout how a so	ftware profe	essional personal	ly manages the se	oftware proc	cesses in			
Objective (PO)	all aspects.	Ill aspects.								
			Course Out	comes (CO)						
After completion	n of course s	students will	be able to							
C01	To study how	to manage ar	nd track the	time for software	processes.					
CO2	To learn how	to schedule th	ne process a	and manage the c	commitment.					
CO3	To learn abou	ut software De	velopment p	process						
CO4	To learn how	to estimate th	e product ar	nd process qualit	у.					

UNIT I-INTRODUCTION AND TIME MANAGEMENT

Software Engineering – Personal Software Process – Improvement Process – Time Management – Logic of Time Management - Elements of Time Management – Categorizing your Activities – Gather Data on time spent by Activity – Evaluating your Time Distribution – Setting Ground rules – Prioritizing your time – Track Time – Recording your Time Data – Tracking your time – Handling Interruptions – Tracking Completed tasks.

UNIT II-MANAGING COMMITMENTS AND SCHEDULES

Defining Commitment – Responsibly made Commitment – Handling Missed Commitments – Importance of Managing Commitments – Consequences of not Managing Commitments – Way to Manage Commitments – Need for Schedules – Gantt Chart – Making a Project Schedule – Checkpoints – Tracking Project Plans – Tracking Earned Value

UNIT III-SOFTWARE PROCESSES AND QUALITY

Need for Processes – Process Script – Checkpoints and phases – Updated Project Plan Summary Form - Defects – Software Quality – Defects and Quality – Defects Versus Bugs – Defect Types – Understanding Defects – Defect Recording Log – Steps in Finding Defects – Ways to Find and Fix Defects.

UNIT IV-PRODUCT AND PROCESS QUALITY

Product Quality – Testing – The Filter view of Testing - Calculating yield values – Estimating the Ultimate Yield – Prototyping – Process Quality – Process Measures – Defect Removal Paradox – Defect Removal strategy – Appraisal/Failure ratio.

REFERENCES

1. Watts.S.Humphery, "PSP: A Self-Improvement Process for Software Engineers", Addison Wesley, 2005.

2. Watts S. Humphery, "Introduction to the Personal Software Process", Addison Wesley, 1997.

- 3. http://www.sei.cmu.edu/library/abstracts/reports/00tr022.cfm
- 4. http://repository.cmu.edu/cgi/viewcontent.cgi
- 5. http://dl.acm.org/citation.cfm?id=650271

MTOE-201				Business Analytics	S				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
Program	The main o	e main objective of this course is to give the student a comprehensive understanding of							
Objective (PO) business analytics methods.									
		C	ourse Ou	tcomes (CO)					
CO1	Able to ha	ve knowledg	e of variou	is business analysis	s techniques.				
CO2	Learn the l	requirement	specificati	on and transforming	g the requirement in	to different m	odels.		
CO3	Learn the l	requirement	representa	ation and managing	requirement asses	ts.			
CO4	Learn the	Recent Tren	ds in Embe	edded and collabora	ative business				

Unit 1

Business Analysis: Overview of Business Analysis, Overview of Requirements, Role of the Business Analyst. Stakeholders: the project team, management, and the front line, Handling, Stakeholder Conflicts. Life Cycles: Systems Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirement Life Cycles.

Unit 2

Forming Requirements: Overview of Requirements Attributes of Good Requirements, Types of Requirements, Requirement Sources, Gathering Requirements from Stakeholders, Common Requirements Documents. Transforming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Additive/Subtractive Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flowcharts, Entity-Relationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, Business Process Modeling

Unit 3

Finalizing Requirements: Presenting Requirements, Socializing Requirements and Gaining Acceptance, Prioritizing Requirements.

Managing Requirements Assets: Change Control, Requirements Tools

Unit 4

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data Journalism.

- 1. Business Analysis by James Cadle et al.
- 2. Project Management: The Managerial Process by Erik Larson and, Clifford Gray

MTOE-203				Industrial S	afety						
Lecture	Tutorial	orial Practical Credit Major Test Minor Test Total Time									
3	0	0	3	60	40	100	3 Hrs.				
Program	To enable	students to a	aware abol	ut the industri	al safety.						
Objective (PO)	Dbjective (PO)										
Course Outcomes (CO)											
C01	Understan	d the industr	ial safety.								
CO2	Analyze fu	ndamental o	f maintena	ance enginee	ring.						
CO3	CO3 Understand the wear and corrosion and fault tracing.										
CO4	Understan maintenan	ding that v ce.	vhen to c	lo periodic	inceptions and	apply the prevent	ng				

Unit-1

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, washrooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-2

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricantstypes and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-3

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic,automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-4

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

MTOE-205			C	perations Res	earch				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
Program	To enable	students to a	aware abo	ut the dynamic	programming to solve	problems of dis	creet		
Objective (PO) and continuous variables and model the real world problem and simulate it.									
Course Outcomes (CO)									
CO1	Students	should able	to apply th	ne dynamic prog	gramming to solve prot	blems of discree	et and		
	continuou	ıs variables.							
CO2	CO2 Students should able to apply the concept of non-linear programming								
CO3	Students	should able	to carry οι	ut sensitivity and	alysis				
CO4	Student s	hould able t	o model th	e real world pro	blem and simulate it.				

Unit -1

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit -2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit- 3

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit -4

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

MTOE-207		Cost Management of Engineering Projects									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
Program	To enable	enable students to make aware about the cost management for the engineering project									
Objective (PO) and apply cost models the real world projects.											
	Course Outcomes (CO)										
C01	Students	should able	to learn th	e strategic cost ma	anagement proce	SS.					
CO2	Students	should able	to types of	f project and projed	ct team types						
CO3	D3 Students should able to carry out Cost Behavior and Profit Planning analysis.										
CO4	Student s	hould able t	o learn the	quantitative techn	iques for cost ma	nagement.					

Unit-1

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost.Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-2

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities.Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts.Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit-3

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit-4

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

MTOE-209			C	composite Mat	erials					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 Hrs.			
Program	To enable	enable students to aware about the composite materials and their properties.								
Objective (PO)	bjective (PO)									
Course Outcomes (CO)										
CO1	Students	should able	to learn th	e Classification	and characterist	ics of Composite m	aterials.			
CO2	Students	should able	reinforcen	nents Composit	e materials.					
CO3	Students	Students should able to carry out the preparation of compounds.								
CO4	Student s	hould able to	o do the ar	nalysis of the co	omposite materia	ls.				

UNIT-1:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites.Functional requirements of reinforcement and matrix.Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Iso-strain and Iso-stress conditions.

UNIT – 2

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing.Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-3

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – 4

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R.
- Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

References:

3.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

MTOE-211				Waste to Ene	rgy					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 Hrs.			
Program	To enable	students to a	aware abo	ut the generatio	on of energy from the	e waste.				
Objective (PO)	re (PO)									
	Course Outcomes (CO)									
C01	Students	should able	to learn th	e Classification	of waste as a fuel.					
CO2	Students	should able	to learn th	e Manufacture	of charcoal.					
CO3	Students	should able	to carry οι	It the designing	of gasifiers and bio	mass stoves.				
CO4	Student s	hould able t	o learn the	Biogas plant te	echnology.					

Unit-1

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-2

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-3

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-4

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

MTAD-101			English F	For Research Pa	per Writing					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Student wi	Student will able to understand the basic rules of research paper writing.								
Objective (PO)										
Course Outcomes (CO)										
C01	Understa	and that how	to improv	e your writing skil	ls and level of read	lability				
CO2	Learn ab	out what to	write in ea	ch section						
CO3	Understa	and the skills	needed w	hen writing a Title	Э					
CO4	Ensure th	ne good qual	ity of pape	r at very first-time	submission					

Unit 1

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

MTAD-103			D	isaster Manag	ement					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Develop al	evelop an understanding of disaster risk reduction and management								
Objective (PO)										
	Course Outcomes (CO)									
CO1	Learn to d	rn to demonstrate a critical understanding of key concepts in disaster risk reduction and								
	humanitari	umanitarian response.								
CO2	Critically e	valuate disa	ster risk re	eduction and hu	ımanitarian respon	se policy and prac	ctice from			
	multiple pe	erspectives.								
CO3	Develop a	n understan	ding of sta	andards of hum	anitarian response	and practical rele	evance in			
	specific typ	pes of disast	ers and co	onflict situations						
CO4	critically	understand	the strei	ngths and we	aknesses of disa	ster managemen	t			
	approache	s, planning	and progra	amming in diffe	rent countries, part	icularly their home)			
	country or	the countrie	s they wor	k in						

Unit 1

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment.Strategies for Survival.Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation.Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep&Deep Publication Pvt. Ltd., New Delhi.

MTAD-105			Sanskrit	for Technical I	Knowledge					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit literature									
Objective (PO)	Objective (PO) about science & technology can be understood and Being a logical language will help to									
develop logic in students										
Course Outcomes (CO)										
CO1	To get a v	vorking knov	vledge in il	lustrious Sansk	rit, the scientific lar	iguage in the world				
CO2	Learning	of Sanskrit t	o improve	brain functionin	g					
CO3	Learning	of Sanskrit t	o develop	the logic in mat	hematics, science o	& other subjects				
	enhancing the memory power									
CO4	The engir	neering scho	lars equip	ped with Sansk	rit will be able to ex	plore the huge				
	knowledg	e from ancie	nt literatur	е						

Unit –1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit –3

Technical concepts of Engineering: Electrical, Mechanical

Unit –4

Technical concepts of Engineering: Architecture, Mathematics

- 1. "Abhyaspustakam" Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTAD-107			Value Ed	ucation						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Understan	d value of e	ducation a	nd self- developm	ent, Imbibe goo	d values in students	and Let			
Objective (PO)	the should	know about	the import	tance of characte	r					
		C	ourse Ou	tcomes (CO)						
CO1	Knowledge	e of self-dev	elopment							
CO2	Learn the	importance o	of Human v	/alues						
CO3	Developin	g the overall	personalit	У						
CO4	Know abo	out the impo	tance of c	haracter						

Unit 1

Values and self-development –Social values and individual attitudes.Work ethics, Indian vision of humanism.Moral and non- moral valuation.Standards and principles.Value judgements.

Unit 2

Importance of cultivation of values.Sense of duty.Devotion, Self-reliance.Confidence, Concentration.Truthfulness, Cleanliness.Honesty, Humanity.Power of faith, National Unity.Patriotism.Love for nature,Discipline

Unit 3

Personality and Behavior Development - Soul and Scientific attitude.Positive Thinking.Integrity and discipline.Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits.Association and Cooperation. Doing best for saving nature

Unit 4

Character and Competence –Holy books vs Blind faith.Self-management and Good health.Science of reincarnation. Equality, Nonviolence,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

MTAD-102			Constitut	tion of India						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program	Understan	d the premis	es inform	ing the twin the	emes of liberty and f	freedom from a c	ivil rights			
Objective (PO)) perspective and to address the growth of Indian opinion regarding modern Indian intellectuals									
	constitutional role and entitlement to civil and economic rights as well as the emergence of									
nationhood in the early years of Indian nationalism.										
Course Outcomes (CO)										
CO1	Discuss th	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the								
	arrival of G	Gandhi in Ind	ian politics).						
CO2	Discuss th	e intellectua	origins of	the framework	of argument that info	ormed the				
	conceptua	lization of sc	cial reforn	ns leading to rev	volution in India.					
CO3	Discuss th	e circumstar	ices surro	unding the foun	dation of the Congre	ess Socialist Party	/[CSP]			
	under the l	leadership o	^r Jawaharl	al Nehru and th	e eventual failure of	the proposal of d	irect			
	elections tl	hrough adult	suffrage i	n the Indian Co	nstitution.					
CO4	Discuss th	e passage o	f the Hindu	Code Bill of 1	956.					

Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

MTAD-104			Pedagog	y Studies				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program	Review e	existing evide	ence on th	e review topic to in	nform programme	design and polic	y making	
Objective (PO)	undertak	en by the Di	FID, other	agencies and rese	earchers and Ide	ntify critical evider	nce gaps	
	to guide	the developr	nent.					
Course Outcomes (CO)								
CO1	What peda	agogical pra	ctices are	being used by tea	chers in formal a	nd informal class	rooms in	
	developing	countries?						
CO2	What is th	e evidence d	on the effe	ctiveness of these	pedagogical pra	ctices, in what co	onditions,	
	and with w	hat populati	on of learn	ers?				
CO3	How can	teacher ed	ucation (d	curriculum and pr	acticum) and th	e school curricu	lum and	
	guidance r	materials bes	st support	effective pedagogy	/?			
CO4	What is the	e importance	of identify	ing research gaps	?			

Unit 1

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

Unit 2

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change.Strength and nature of the body of evidence for effective pedagogical practices.Pedagogic theory and pedagogical approaches.Teachers' attitudes and beliefs and Pedagogic strategies.

Unit 3

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit 4

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272– 282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

MTAD-106			Stress M	anagement by	Yoga						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	0	-	100	100	3 Hrs.				
Program	To achieve	e overall hea	th of body	and mind and	to overcome stress						
Objective (PO)	bjective (PO)										
	Course Outcomes (CO)										
CO1	Develop I	healthy mind	in a healtl	hy body thus im	proving social health						
CO2	Improve e	efficiency									
CO3	Learn the	e Yogasan									
CO4	Learn the	pranayama									

Unit – 1

Definitions of Eight parts of yog (Ashtanga).

Unit- 2

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit- 3

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit- 4

Regularization of breathing techniques and its effects-Types of pranayam.

- 1. 'Yogic Asanas for Group Tarining-Part-I" :Janardan Swami YogabhyasiMandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

MTAD-108	Personality Development through Life Enlightenment Skills							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program	To learn to achieve the highest goal happily							
Objective (PO)	To become a person with stable mind, pleasing personality and determination							
	To awaken wisdom in students							
Course Outcomes (CO)								
CO1	Students become aware about leadership.							
CO2	Students will learn how to perform his/her duties in day to day work.							
CO3	Understand the team building and conflict							
CO4	Student will learn how to become role model for the society.							

Unit – 1

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit – 2

Approach to day to day work and duties; ShrimadBhagwadGeeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit - 3

Statements of basic knowledge; ShrimadBhagwadGeeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit – 4

Personality of Role model; ShrimadBhagwadGeeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1. Srimad Bhagavad Gita, Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

	Dissertation Part-I (MTSE-207) and Dissertation Part-II (MTSE-202)				
Course Outcomes (CO)					
C01	Ability to synthesize knowledge and skills previously gained and applied to an in depth study and execution of new technical problem.				
CO2	Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.				
CO3	Ability to present the findings of their technical solution in a written report.				
CO4	Presenting the work in International/ National conference or reputed journals.				

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following:

Relevance to social needs of society

Relevance to value addition to existing facilities in the institute

Relevance to industry need

Problems of national importance

Research and development in various domain

The student should complete the following:

Literature survey Problem Definition

Motivation for study and Objectives

Preliminary design / feasibility / modular approaches

Implementation and Verification

Report and presentation

The dissertation part- II is based on a report prepared by the students on dissertation allotted to them. It may be based on: Experimental verification / Proof of concept.

The viva-voce examination will be based on the above report and work.

Guidelines for Dissertation Part - I and Dissertation Part - II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two parts i.e. Part– I: July to December and Part– II: January to June.

The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives.

The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing Engineering and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Part-I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper, proof of concept/functionality, part results, and record of continuous progress.

Part–I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Part-I work.

During Part– II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Part–II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, and record of continuous progress.

Part-II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the Part-I work.