Induction Program

(Duration - Three weeks)

Date	9:00-10:00 AM	10:00-11:00 AM	11:00-12:00 AM	12:00-1:00 PM	2:00-4:00 PM
1/8/2018	Yoga	Student address by Director	Interaction with students branch wise	Interaction with students continued	Communication skill classes
2/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
3/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
4/8/2018	-	Holiday	-	-	-
5/8/2018	-	Holiday	-	-	-
6/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
7/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
8/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
92/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
10/8/2018	Yoga	Group discussion, quiz activities etc.	Hobby classes	hobby classes contd.	Communication skill classes
11/8/2018	-	Holiday	-	-	
12/8/2018	-	Holiday	-	-	
13/8/2018	Yoga	Art of living workshop	Hobby classes	hobby classes contd.	Communication skill classes
14/8/2018	Yoga	Art of living workshop	Hobby classes	hobby classes contd.	Communication skill classes
15/8/2018	-	-	-	-	-
16/8/2018	Yoga	first aid training	Lecture on gender sensitization	Workshop/lecture on skill development	Communication skill classes
17/8/2018	Yoga	Librarian lecture	Lecture on Moral values	Workshop/lecture on skill	Communication skill classes

				development	
18/8/2018	-	Holiday	-	-	
19/8/2018	-	Holiday	-	-	
20/8/2018	Yoga	Lecture on stress management	Self-defence training for girls	Self-defence training for girls	Communication skill classes
21/8/2018	Yoga	Lecture on ragging issues	Self-defence training for girls	Self-defence training for girls	Local visit for hostelers

Note: 1. The schedule prepared is tentative and is designed for implementing in UIET, KUK for session 2018-2019 and may further be modified as per feedback for future sessions.

2. This induction program is mandatory (non- credit) for 1st year students in 1st semester.

New Scheme and Syllabus For Bachelor of Technology First Year in 1. Biotechnology (BT), 2. Computer Science & Engineering (CSE), 3. Electronics & Communication Engineering (ECE) and 4. Mechanical Engineering (ME) branches to be implemented from session 2018- 2019 in UIET, KUK (Credit - based system) as per Model Curriculum Provided by AICTE

Course Code and Definition for First Year Scheme

Course Code	Definitions
BS	Basic Science
ES	Engineering Science
HM	Humanities and Social Sciences including Management

Bachelor of Technology (Biotechnology), UIET, KUK Credit-Based (2018-19 Onwards)

SCHEME OF STUDIES/EXAMINATIONS (Semester - I)

S.No	Course No./	Subject	L:T:P	Hours/	Credits	Examination Schedule (Marks)			;)	Duration
	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-111	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-131	Applied Mathematics-I	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113L	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	M-103L Language Lab		2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in I st semester for all branches.

Bachelor of Technology (Biotechnology), UIET, KUK Credit-Based (2018-19 Onwards in Phased manner) SCHEME OF STUDIES/EXAMINATIONS (Semester -II)

S.	Course No./	Subject	L:T:P	Hours/	Credits	Examination Schedule (Marks)			;)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-111	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-132	Applied Mathematics-II	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113L	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: (1) A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester.

(2) All students have to undertake the industrial training for 4 to 6 weeks after 2nd semester which will be evaluated in 3rd semester.

Bachelor of Technology (Computer Science & Engineering), UIET, KUK

Credit-Based (2018-19 Onwards)

SCHEME OF STUDIES/EXAMINATIONS (Semester - I)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	Schedule (Mark	(s)	Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-115	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-133	Calculus & Linear Algebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117L	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Bachelor of Technology (Computer Science & Engineering), UIET, KUK Credit-Based (2018-19 Onwards)

SCHEME OF STUDIES/EXAMINATIONS (Semester -II)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	xamination	Schedule (Mar	ks)	Duration
Ν.	Code			Week		Major	Minor	Practical	Total	of exam
						Test	Test			(Hours)
1A	BS-115	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-134	Probability & Statistics	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-117L	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: (1) A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester.

(2) All students have to undertake the industrial training for 4 to 6 weeks after 2nd semester which will be evaluated in 3rd semester.

Bachelor of Technology (Electronics & Communication Engineering), UIET, KUK Credit-Based (2018-19 Onwards)

SCHEME OF STUDIES/EXAMINATIONS (Semester - I)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	xamination S	Schedule (Marl	(s)	Duration
No.	Code			Week		Major	Minor	Practical	Total	of exam
						Test	Test			(Hours)
1A	BS-119	Introduction to Electromagnetic Theory	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-135	Multivariable Calculus & Linear Algebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121L	Electromagnetics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester.

Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Bachelor of Technology (Electronics & Communication Engineering), UIET, KUK Credit-Based (2018-19 Onwards in Phased manner) SCHEME OF STUDIES/EXAMINATIONS (Semester -II)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination Schedule (Marks)			Duration
No.	Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-119	Introduction to Electromagnetic theory	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-136	Calculus & Ordinary Differential Equations	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121L	Electromagnetics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: (1) A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester.

(2) All students have to undertake the industrial training for 4 to 6 weeks after 2nd semester which will be evaluated in 3rd semester.

Bachelor of Technology (Mechanical Engineering), UIET, KUK Credit-Based (2018-19 Onwards)

SCHEME OF STUDIES/EXAMINATIONS (Semester - I)

S.	Course No./	Subject	L:T:P	Hours/	Credits	E	Examination S	chedule (Marl	(S)	Duration
No.	Code			Week		Major	Minor Test	Practical	Total	of exam
						Test				(Hours)
1A	BS-119	Introduction to Electromagnetic Theory	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-135	Multivariable Calculus & Linear Algebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121L	Electromagnetics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Bachelor of Technology (Mechanical Engineering), UIET, KUK Credit-Based (2018-19 Onwards)

SCHEME OF STUDIES/EXAMINATIONS (Semester -II)

S.	Course No./	Subject	L:T:P	Hours/	Credits		Examination Solution	chedule (Marl	(s)	Duration
No.	Code			Week		Major	Minor Test	Practical	Total	of exam
						Test				(Hours)
1A	BS-119	Introduction to Electromagnetic theory	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-136	Calculus & Ordinary Differential Equations	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121L	Electromagnetics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	English Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: (1) A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester.

(2) All students have to undertake the industrial training for 4 to 6 weeks after 2nd semester which will be evaluated in 3rd semester.

BS-111		Applied Physics									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	1	-	4	75	25	100	3h				
Purpose	To introduce t	he basics of ph	nysics to th	e students	for application	s in Engin	eering field.				
			Cours	e Outcomes	6						
CO 1	Introduce the	fundamentals of	of interfere	nce and diff	fraction and the	eir applica	tions.				
CO 2	To make the s	tudents aware	of the impo	ortance of p	olarization and	Laser in t	technology.				
CO 3	Applications of optical fiber and ultrasonics in various fields.										
CO 4	CO 4 Introduce the nuclear radiations and its biological effects.										

Unit - I

Interference: Principle of Superposition, Conditions for interference, Division of wave-front: Fresnel's Biprism and Applications, Division of amplitude: Wedge-shaped film, Newton's rings, Michelson Interferometer and Applications. **Diffraction:** Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

Unit – II

Polarization: Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartzpolarimeter. **Laser:** Introduction, Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping schemes, Main components of Laser, He-Ne Laser, Semiconductor Laser, Characteristics of Laser, Applications of Laser.

Unit – III

Optical Fiber: Introduction, Principle of propagation of light waves in optical fibers: total internal reflection, acceptance angle, numerical aperture, V- number; Modes of propagation, Types of optical fibers: single mode fiber, multimode fibers; Fiber optics communication system, Advantages of optical fiber communication, Applications of optical fibers.

Ultrasonics: Ultrasonic waves, Properties of ultrasonic waves, Production of ultrasonic waves: Magnetostriction and Piezoelectric methods, Detection of ultrasonic waves, Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.

Unit – IV

Nuclear radiations and its Biological Effects: Classification of nuclear radiations, Interaction of charged particle (light and heavy) and gamma radiations with matter (basic concepts), Dosimetric units, Relative Biological Effectiveness (RBE), Typical doses from commons sources in the environment, Biological Effects, Maximum Permissible Dose, (MPD), Shielding, Radiation safety in the nuclear radiation laboratory.

Biomaterials: Introduction, Classification of biomaterials, Applications.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 3. A Textbook of Optics, S. Chand & Company Ltd.
- 4. Techniques for Nuclear and Particle Physics Experiments: A How-to Approach, Springer-Verlag.
- 5. Introduction to Nuclear and Particle Physics, PHI Learning Private Limited.
- 6. Biomaterials: The intersection of Biology and Materials Science, Pearson, New Delhi.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-113L		Applied Physics Lab									
L	T P Credit Practical Minor Test Total										
-	-	3	1.5	30	20	50	3h				
Purpos	e Give the kn	owledge of ba	sic practicals of	Physics in Eng	gineering.						
			Course Ou	tcomes							
CO1	To make the students familiar with the experiments related with optics.										
CO2	To give the knowledge of handling of the experiments related with resistance using different										
	methods.										

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To verify Newton's formula and hence to find the focal length of the given convex lens.
- 2. To find the frequency of A.C. mains by using Sonometer and horse shoe magnet.
- 3. To find the resistance of a galvanometer by post office box.
- 4. To find low resistance by Carrey-Foster bridge.
- 5. To find the value of high resistance by substitution method.
- 6. To compare the capacitances of two capacitors by De-Sauty's bridge and hence to find the dielectric constant of a medium.
- 7. To convert a galvanometer into an ammeter of desired range and verify the same.
- 8. To find the wavelength of monochromatic light by Newton's ring experiment.
- 9. To find the wavelength of sodium light by Michelson's interferometer.
- 10. To find the resolving power of telescope.
- 11. To find the wavelength of sodium light using Fresnel bi-prism.
- 12. To find the wavelength of various colours of white light with the help of plane transmission diffraction grating.
- 13. To find the specific rotation of sugar solution by using a Polarimeter.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, Pragati Prakashan.

BS-11	-115 Semiconductor Physics							
L	L T P Crec			Credit	Major	Minor Test	Total	Time
					Test			
3		1	-	4	75	25	100	3h
Purpose	To in	troduce the	fundamentals of	solid state	e physics a	and its applica	ations to t	he students.
				Course Ou	itcomes			
CO1	To m	ake the stud	lents aware of ba	asic termin	ology of c	rystal structu	re.	
CO 2	Intro	duce the el	ementary quant	um mecha	anics, wh	ich will be u	iseful in	understanding the
	concepts of solid state physics.							
CO 3	Discussion of classical free electron theory, quantum theory and Band theory of solids.							
CO 4	Basic	cs and applie	cations of semic	onductors.				

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-117L		Semiconductor Physics Lab									
L		T P Credit Practical Minor Test Total Time									
-		-	3	1.5	30	20	50	3h			
Purpos	Purpose To give the practical knowledge of handling the sophisticated instruments.										
		Course Outcomes									
CO	To make	make the students familiar with the experiments related with Semiconductor Physics.									

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-119	19 Introduction to Electromagnetic Theory								
L	Т	T P Credit Major Minor Test To							
3 1 -		4	75	25	100	3h			
Purpose	To introduce t Engineering fie	he fundamenta eld.	ls of electr	omagnetic	theory to the	e students	s for applications in		
	•		Course C)utcomes					
CO 1	Introduce the b	oasic concepts	of Electros	tatics in va	acuum.				
CO 2	Introduce the b	ntroduce the basic concepts of Magnetostatics in vacuum.							
CO 3	Discuss electro	Discuss electrostatics and magnet ostatics in linear dielectric medium.							
CO 4	Basics of Maxv	well's equations	s and electr	omagnetic	waves.				

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization:dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic filed, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

Note: The paper setter will set the paper as per the question paper templates provided.

BS-121L		Electromagnetics Lab									
L	Т	T P Credit Practical Minor Test Total Time									
-	-	3	1.5	30	20	50	3h				
Purpose	e To give th	e practical k	nowledge of ha	ndling the instr	ruments.						
		Course Outcomes									
CO	To make the s	make the students familiar with the experiments related with Electromagnetic Theory.									

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS-101		Chemistry								
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	1	-	4	75	25	100	3h			
Purpose	To fam	iliarize the stude	ents with bas	ic and appli	ed concept in c	hemistry				
CO1	An insi	ight into the ator	nic and mole	cular struct	ure					
CO2	Analyt	Analytical techniques used in identification of molecules								
CO3	To und	To understand Periodic properties								
CO4	To und	erstand the spa	tial arrangem	ent of mole	cules					

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N₂, O₂, CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of $[Co(NH_3)_6]$, $[Ni(CO)_4]$, $[PtCl_2(NH_3)_2]$ and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCl₅, SF₆, CCl4, Pt(NH₃)₂Cl₂

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane

3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell

4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan

5) Physical Chemistry, by P. W. Atkins

6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Note: The paper setter will set the paper as per the question paper templates provided.

BS-103L		Chemistry Lab							
L	Т	Р	Credit	Practical	Minor Test	Total	Time		
-	-	- 3 1.5 30 20 50 3h							

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCI solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-105		Programming for Problem Solving									
L	T P Credit Major Minor Total Time										
				Test	Test						
3	-	-	3	75	25	100	3h				
Purpose	To fa	To familiarize the students with the basics of Computer System and C Programming									
			Со	urse Outcom	es						
CO 1	Describe th	e overview o	of Computer S	System and L	evels of Pro	gramming La	anguages.				
CO 2	Learn to tra	Learn to translate the algorithms to programs (in C language).									
CO 3	Learn description and applications of conditional branching, iteration and recursion.										
CO 4	To use arra	ys, pointers	and structure	es to formula	te algorithm	s and progra	ms.				

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

1.Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.

2.Subrata Saha, Subhodip Mukherjee: Basic Computation & Programming with 'C'-Cambridge University Press.

3. Ajay Mittal, "Programming in C - A Practical Approach", Pearson.

4.E Balagurusamy : Programming in ANSI C, TMH Education.

5. Pradip Dey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.

6.ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.

7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..

8.Yashwant Kanetker, "Let us C", BPB Publications.

9.A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications

10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

Note: The paper setter will set the paper as per the question paper templates provided.

ES-107L	Programming for Problem Solving Lab									
L	T P Credit Practical Minor Total Time									
					Test					
-	-	2	1	30	20	50	3h			
Purpose	То	To Introduce students with problem solving using C Programming language								
			Cou	rse Outcome	S					
CO 1	To formulate	the algorithr	ns for simpl	e problems						
CO 2	Implementati	on of arrays	s and function	ons.						
CO 3	Implementation of pointers and user defined data types.									
CO 4	Write individu	ual and grou	p reports: pi	resent object	ives, describ	e test proce	dures and results.			

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

L T P Credit Major Minor Test Total Time	HM-101	1	English								
I Iest	L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
2 2 75 25 100 3h	2	-	-	2	75	25	100	3h			
Course Outcomes				Cours	e Outcomes						
CO 1 Building up the vocabulary	CO 1	Building up t	Building up the vocabulary								
CO 2 Students will acquire basic proficiency in English including writing skills	CO 2	Students will	Students will acquire basic proficiency in English including writing skills								

UNIT- 1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT-3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT-4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- ví) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

Note: The paper setter will set the paper as per the question paper templates provided.

HM-103L		Language Lab								
L	Т	T P Credit Practical Minor Test Total Time								
-	-	2	1	30	20	50	3h			

OBJECTIVES

- 1.
- 2.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- Formal Presentations 6.

BS-131				APPLIED M	ATHEMATICS	6-I						
L	Т	Р	Credit	Major	Minor	Total	Time					
				Test	Test							
3	1	-	4	75	25	100	3 h					
Purpose	se The objective of this course is to familiarize the prospective Biotechnology Engineers v											
	techniques	in Limit, Co	ntinuity, Diffe	erential & Ir	tegral Calculu	us and Comp	plex Numbers. It aims to					
	equip the s	students wit	n standard d	oncepts an	d tools at a b	beginner to i	ntermediate and then at					
	advanced l	evel that will	serve them	well towards	s tackling more	e advanced	level of mathematics and					
	applications	s that they v	vould find us	seful in their	[·] disciplines. I	More precise	ly, the objectives are as					
	under:											
			Col	Irse Outcor	nes							
CO1	To introduce	the idea of	f sets, relati	ons, functio	ns, trigonome	etric function	is, inverse trigonometric					
	functions, thes	se concepts	are prerequis	site to learn	the concepts of	of differentiati	ion and integration.					
CO 2	To introduce	the Complex	numbers w	hich is fund	lamental to so	olve any kind	d of quadratic equations,					
	Limit is precor	ndition to und	lerstand the	concept of r	ate of change	and derivativ	/e.					
CO 3	To develop the	ne essential	tool of Con	tinuity and	Differentiability	y needed in	evaluating higher order					
	derivatives of	rivatives of functions.										
CO 4	To introduce t	he tools of I	ndefinite and	Definite inte	egrals of funct	ions in a cor	nprehensive manner that					
	are used in va	rious technio	ques dealing	engineering	problems.							
UNIT-I					(12 hr	rs)						

UNIT-I

Sets, Relations, Functions

Sets and its types: Operations on sets, complement of a set, Cartesian Product of sets, relations, functions, types of functions, Trigonometric functions: Introduction, Angles, Trigonometric functions, Trigonometric functions of sum and difference of two angles, Trigonometric equations, Inverse Trigonometric functions: Introduction, basic concepts and its properties.

UNIT-II

Pre-Calculus

Complex Numbers: Introduction, Algebra of Complex Numbers, Modulus and the conjugate of a complex number, guadratic equations, Limits and Derivatives: Introduction, Limits, Limits of Trigonometric Functions, Derivatives (single variable).

UNIT-III

Differential Calculus

Continuity and Differentiability: Introduction, Continuity, Differentiability, Exponential and Logarithmic functions, Logarithmic differentiation, Derivatives of functions in parametric forms, second order derivatives, Application of Derivatives (single variable): Increasing and decreasing functions, Maxima and Minima.

UNIT-IV

Integral Calculus

Integrals: Introduction, Integration as an Inverse process of Differentiation, Method of Integration, Integration by Partial Fractions, Integration by Parts, Definite Integrals: Fundamental theorem of Calculus, Evaluation of Definite Integrals by Substitution, properties of Definite Integrals.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education.
- 2. Mathematics Textbook for Class 11th & 12th by NCERT.
- 3. Howard Anton: Calculus, Wiley Publication.
- 4. E. Kreyszig: Advanced Engineering Mathematics, Wiley India.

Note: The paper setter will set the paper as per the question paper templates provided.

(12 hrs)

(12 hrs)

(12 hrs)

BS-133			С	alculus and	Linear Alge	bra				
L	Т	Р	Credit	Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3 h			
Purpose Tto familiarize the prospective engineers with techniques in calculus, sequence & series										
	multivariable calculus, and linear algebra.									
Course Outcomes										
CO1	To introduce	To introduce the idea of applying differential and integral calculus to notions of improper								
	integrals. Ap	part from so	ome applica	itions it giv	ves a basic	introduction	n on Beta and Gamma			
	functions.									
CO 2	To introduce	the fallouts	s of Rolle's	Theorem the	nat is fundar	nental to ap	plication of analysis to			
	Engineering	prob lems.								
CO 3	To develop t	ne essential	tool of mate	rices and lir	ear algebra i	in a comprel	hensive manner.			
CO 4	To familiarize the student with vector space as an essential tool in most branches of									
UNIT-I	engineering.				(12 h	rs)				

Calculus:

Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination.

UNIT-III

Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity. Inverse of a linear transformation, rank nullity theorem, composition of linear maps.

UNIT-IV

Vector spaces

Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces.

Suggested Books:

1.ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.

3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.

5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East-West press, Reprint 2005.

10. S. Lipschutz and M. Lipson, Schaum's outline of Linear Algebra, McGraw Hill Education; 3 edition (1 July 17).

(10 hrs)

(8 hrs)

(10 hrs)

Note: The paper setter will set the paper as per the question paper templates provided.

DC 425												
85-135	-		Multivar		us and Line	ar Aigebra						
L	1	Р	Credit	Major	Minor	lotal	lime					
				lest	lest	400						
3	1	•	4	/5	25	100	3 h					
Purpose	To familia	rize the pro	spective er	igineers wi	th techniqu	es in calculu	us, sequence & series,					
	multivarial	ole calculus	, and linear a	algebra.								
		4 11	Cou	Irse Outcor	nes							
CO1	I o introduce the idea of applying differential and integral calculus to notions of improper											
	integrals. Apart from some applications it gives a basic introduction on Beta and Gamma											
	functions.	functions.										
CO 2	To introduce	the fallouts	s of Rolle's	Theorem the	hat is funda	mental to ap	plication of analysis to					
	Engineering	problems.										
CO 3	lo develop	the tool of	power serie	es and Fou	rier series	for learning	advanced Engineering					
	Mathematics			. ,								
CO 4	I o familiarizo	e the studen	t with funct	ions of sev	eral variable	s that is ess	ential in most branches					
	of engineerin	g.										
CO 5	To develop tl	ne essential	tool of matr	rices and lir	lear algebra	in a comprel	nensive manner.					
UNIT-I					(12 h	nrs)						
Calculus: E	aluation of def	inite and imp	proper integra	als: Beta an	d Gamma fu	nctions and th	neir properties; Application					
of definite int	egrals to evalu	ate surface a	reas and vol	umes of rev	olutions.							
Rolle's Theor	rem, Mean valu	le theorems,	Indeterminat	te forms and	L'Hospital's	rule.						
UNIT-II					(12 h	rs)						
Sequence a	nd Series: Co	nvergence o	t sequence a	and series, t	ests for conv	vergence (Cor	mparison test, D'Alembert'					
Ratio test, Lo	garithmic test,	Cauchy root	test, Raabe	s test); Pow	er series.	c · · ·						
Fourier serie	s: introduction,	Fourier-Eule	er ⊦ormula, L	Jirichlet's co	onditions, Cha	ange of interv	als, Fourier series for eve					
and odd fund	tions, Half rang	je sine and c	osine series.		(001	`						
UNII-III Multiveriable	Coloulus (s	l: 66	u). Touloula	aaniaa (fan	(09 Nr	S)	a) anniae fan avraanstie					
Wultivariable	e Calculus (C	litterentiatio	n): Taylors	series (tor	one and n	nore variable	s), series for exponential					
	and logarithm	iunclions.	in mula far di	Horoptiction	Llamagana	un functions	Fular's theorem leaching					
Partial deriva	itives, lotal diff	erential, Una	ain rule for di		, Homogeneo	ous functions,	Euler's theorem, Jacobiar					
		e points, metr	IOU OF Lagran	ige multiplie	15. (07 h							
UNIT-IV	ank of a matrix	alamantanul	ranafarmatia	na alamant	(U/ II) aru matriada	IIS) Course lorde	n mothed to find inverse					
watrices: Ra	ank of a mainx,	elementary	liansionnalio	ons, elementi ostriv, lineor	ary matrices,	Gauss Jordo	n method to find inverse					
	nary transforma	auons, norma	al IUIIII UI a II	atthogonal t	ransformatio		and algonyostors					
nonortion of			s, iiriedi dilü vilton thooror	or inoyonal t	liansiona	ns, eigenvalue	es and eigenvectors,					
properties of	eigenvalues, C	ayley – Hall		i anu its app	nications.							
Suggested	DOURS.											

1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.

3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.

5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-132			AF	PLIED MATHE	MATICS-II					
L	Т	Р	Credit	Major Test	Minor Test	Total	Time			
3	1	-	4.5	75	25	100	3 h			
Purpose	The objectiv	e of this o	ourse is to	familiarize the	prospective Biote	chnology Engir	neers with			
	techniques i	n essential t	ool of linear	algebra, how to	solve a differentia	l equation, utility	of higher			
	order deriva	tives in engi	neering doma	ain, and fitting o	of a curve to given	data. It aims to	equip the			
	students with	n standard co	oncepts and f	tools at a beginr	ner to intermediate a	and then at adva	nced level			
	that will serv	e them well t	owards tackl	ing more advand	ced level of mathem	natics and applic	ations that			
	they would fi	nd useful in t	heir disciplin	es. More precise	ely, the objectives a	re as under:				
			Cou	rse Outcomes						
CO1	To introduce th	e essential to	ool of matrice	es and linear alg	ebra in a comprehe	ensive manner to	o solve the			
	large system of	linear equat	ons.							
CO 2	To introduce th	e statistical p	process used	for estimating t	he parameters of a	given curve or	function to			
	fit to a given da	ta set using v	arious degre	es and types of	curve fitting technic	lues.				
CO 3	To introduce ef	o introduce effective mathematical tools for the solutions of differential equations that model physical								
	processes.									
CO 4	To extend some	e concept of	differential ca	alculus for more	than one variables.					
UNIT-I		•			(10 Hrs)					

Linear Algebra:

Introduction to matrices, its types, algebraic operations, transpose, determinant, minors and adjoint of a matrix. Elementary transformations, Inverse of a square matrix: Cramer's rule, Rank of a matrix, elementary matrices, Gauss Jordon method to find inverse using elementary transformations.

System of Linear equations: General representation, Homogeneous and Non-homogeneous system of linear equations, Consistency of linear system of equations, Gauss Elimination method to solve the system of linear equations.

UNIT-II

Theory of Equations:

Introduction, formation of equations, Relation between roots and coefficients, Reciprocal Equations, Transformation of equations.

Curve Fitting:

Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^b$, fitting of an exponential curve of the form $y = ab^x$.

UNIT-III

Ordinary differential equations:

Introduction, order and degree of the differential equation, Formation of differential equation, Solution of the differential equation with variables separable and differential equations reducible to variable separable form, exact differential equation, and equations reducible to exact differential equations, linear and Bernoulli's equations, Euler's equations.

UNIT-IV

(10 hrs)

(12 Hrs)

(08 hrs)

Multivariable Calculus:

Partial derivatives, Total differential, Chain rule for differentiation, Partial derivatives of higher orders, Homogeneous functions, Euler's theorem on homogeneous functions, differentiation of an implicit function, Jacobian, Maxima and minima of a function of two variables. Lagrange's method of undetermined multipliers.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education.
- 2. H. Anton, Irl C Bivens, Stephen Davis: Calculus 10th Edition, John Wiley & Sons.
- E. Kreyszig: Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. 3.
- 4. E. Kreyszig and S. Ahuja, Applied Mathematics-II, Wiley India Publication, Reprint 2015.
- 5. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, Oxford University Press.
- Mathematics Textbook for Class 11th & 12th by NCERT. 6.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-136			Calculus	& Ordinary	Differential	Equations				
L	Т	Т Р		Major	Minor	Total	Time			
				Test	Test					
3 1 - 4 75 25 100							3 h			
Purpose	To familiarize the prospective engineers with techniques inmultivariate integration, ordinary									
	and partial differential equations and complex variables.									
			Col	Irse Outcor	nes					
CO1	To introduce	effective m	athematical	tools for the	ne solutions	of differentia	al equations that model			
	physical proc	cesses.								
CO 2	To acquaint	the student	with mathe	ematical to	ols needed i	n evaluating	multiple integrals and			
	their usage.									
CO 3	To introduce	e the tools	of different	tiation and	integration	of function	s of complex variable			
	thatare used	in various t	echniques d	lealing engi	neer ing prob	olems.	-			

UNIT-I

(10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree:equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs)

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes: Triple integrals (Cartesian), orthogonal curvilinear coordinates. Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

(10hrs)

(10 hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

Complex Variable - Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

BS-13	4			Prob	ability & Statisti	cs				
L		Т	Р	Credit	Major Test	Minor Test	Total	Time		
3		1	-	4.5	75	25	100	3 h		
Purpos	se	To familiarize	e the prospect	ive students w	ith techniques of	probabilty and s	tatistics.			
				Course Ou	Itcomes					
CO1	Proba	ability theory	provides mod	els of probabi	lity distributions(theoretical mod	els of the ob	servable		
	reality	/ involving ch	ance effects)	to be tested	by statistical met	hods which ha	s various eng	gineering		
	applic	ations, for i	nstance, in f	esting materi	als, control of p	production proc	esses, robot	ics, and		
	auton	natization in g	eneral, produc	tion planning a	and so on.					
CO 2	To develop the essential tool of statistics in a comprehensive manner.									
CO 3	To fa	miliarize the	student with t	he problem of	discussing unive	erse of which th	ey in which o	complete		
	enum	eration is imp	ractical, tests	of significance	plays a vital role	in their hypothes	sis testing.			
UNIT-I				e	(10	Hrs)				
Basic Pro	babilit	y: Introductio	n, additive lav	w of probabilit	ty, Conditional Pr	obability, Indep	endent Even	is, Bayes'		
i neorem.			. ,							
Random	var	lables: U	VISCIPICE IN	andom va	riables, prob	ability distr	IDUTION, I			
mass lunci	ion and	a distribution	iunction, Expe	clation, Mome	nts, variance and	i standard devia	luon of discre	le random		
					(10)	۲c)				
Continuou	e Drot	ability distri	hution:		(101	115)				
Continuous	rand	om variables	nrohability	distribution	Probability densi	ty function and	d distribution	function		
Expectation	n Morr	ents Varianc	e and standar	d deviation of (Continuous rando	m variables		ranotion,		
Probability	distrib	utions: Binor	nial. Poisson	and Normal	- evaluation of	statistical parar	neters for th	ese three		
distribution	S.		,		•••••••••••••••••••••••••••••••••••••••	person person				
UNIT-III					(10)	nrs)				
Basic Stat	istics:				(-	- /				
Measures	of Cen	tral tendency	: Mean, medi	an, quartiles,	mode, Geometric	mean, Harmor	nic mean, Me	asures of		
dispersion:	Rang	e, Quartile c	leviation, mea	an deviation,	standard deviation	on, coefficient	of variation,	Moments,		
Skewness	and Ki	urtosis, Correl	ation, Coeffici	ent of correlat	ion, methods of c	alculations, Line	es of regressi	on, Rank		
correlation.							-			

UNIT-IV

(10 hrs)

Applied Statistics:

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^{b}$, fitting of an exponential

curve of the form $y = ab^x$.

Test of significance: Basic terminology, Large sample test for single proportion, difference of proportions, single mean, difference of means, Small samples test for single mean, difference of means, Chi-square test for goodness

of fit.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-109							
Coursetitle	Engi	Engineering Graphics& Design							
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Total	Time	
	1	2	0	3	75	25	100	3h	

Course Outcomes

Objective-	Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.								
CO-1	To learn about construction of various types of curves and scales.								
CO-2	To learn about orthographic projections of points, lines and planes.								
CO-3	To Learn about the sectional views and development of Right regular solids								
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.								

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

ProjectionsofRegular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular soilds like prism, pyramid, Cylinder and Cone. Development ofsurfacesofRightRegularSolids-Prism,Pyramid,CylinderandCone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-11	ES-113L							
Coursetitle	Engineering Graphics & Design Practice								
Scheme and Credits	L	Т	Ρ	Credits	Practical	Minor Test	Total	Time	
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any) -									

Aim:	То	make	student	practice	on	engineering	graphics	and	designsoftwaresand	provide		
exposi	ureto	thevisua	laspectsof	engineerin	gdesi	gn.						
CO-1		To give an overview of the user interface and toolboxes in a CAD software.										
CO-2		To u	nderstand t	o customiz	e sett	ings of CAD so	ftware and p	roduce	e CAD drawing.			
CO-3		To practice performing various functions in CAD softwares.										
CO-4		To Le	To Learn about solid modelling and demonstration of a simple team design project.									

Module 1: Overview of Computer Graphics:

Listing the computer technologies that impact on graphical communication, Demonstrating Knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus(Button Bars), The Command Line(where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids];

Module2: Customization & CAD Drawing:

Setup of the drawing page and the printer ,including scale settings, Setting up of units and drawing limits ;ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

Module3: Annotations, layering & other functions:

Applying dimensions to objects applying annotations to drawings ;Setting up and use of Layers ,layers to create drawings ,Create ,edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen);Printing documents to paper using the print command ;orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation ,Computer-aided design(CAD) software modeling of parts and assemblies .Parametric and non-parametric solid, surface, and wire frame models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises .Dimensioning guidelines ,tolerancing techniques; dimensioning and scale multi views of dwelling;

Module4: Demonstration of a simple team design project:

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blue print form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows ,doors ,and fixtures such as WC, bath ,sink ,shower ,etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Corresponding set of)CAD Software Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-111L								
Coursetitle	Manuf	Manufacturing Processes Workshop							
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time	
	0	0	3	1.5	60	40	100	3h	
Pre-requisites (if any)									

Aim: To	Aim: To make student gain a hands on work experience in a typical manufacturing industry environment.								
CO-1	To familiarize with different manufacturing methods in industries and work on CNC machine.								
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,								
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.								
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.								

$Manufacturing {\it Processes} Workshop$

Contents

1. Manufacturing Methods-casting, forming, machining ,joining, advanced manufacturing methods

- 2. CNCmachining, Additivemanufacturing
- 3. Fittingoperations&powertools
- 4. Electrical&Electronics
- 5. Carpentry
- 6. Plastic moulding ,glass cutting
- 7. Metalcasting
- 8. Welding(arc welding&gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS-141	Biology										
L	Т	Р	Credit Major Test Minor Test Total Tin								
2	1	-	3	75	25	100	3h				
Purpose	To familiarize the students with the basics of Biotechnology										
Course Outcomes											
CO1	Introductio	on to essent	als of life a	and macromole	cules essential for	growth and					
	Developm	ent									
CO2	Defining the	ne basic con	cepts of ce	ell division, ger	es and Immune sy	stem					
CO3	Introduction of basic Concept of Thermo Genetic Engg. & Biochemistry										
CO4	Introductio	on of basic C	oncept of	Microbiology 8	Role of Biology in	Different Fields					

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 23ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation. Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology : Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Microelectromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal & Deswal, Dhanpat Rai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press Washington DC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

ES-101	BASIC ELECTRICAL ENGINEERING										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(Hrs)				
4	1	-	5	75	25	100	3				
Purpose	To familiarize the students with the basics of Electrical Engineering										
Course Outcomes											
CO1	Deals with steady state circuit analysis subject to DC.										
CO 2	Deals with AC fundamentals & steady state circuit response subject to AC.										
CO 3	Deals with introductory Balanced Three Phase System analysis and Single Phase Transformer.										
CO 4	Explains the Basics of Electrical Machines & Electrical installations										

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit. Star-Delta transformation for resistors.**Network Theorems:** Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodicsignal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts. including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phase emf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon. Principle, construction &emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg. by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals: by Bobrow, Oxford Univ. Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena & Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

Note: The paper setter will set the paper as per the question paper templates provided.

ES-103L	BASIC ELECTRICAL ENGINEERING LAB									
L	Т	Practical	Credit	Minor Test	(Practical)	Total	Time (Hrs)			
-	-	2	1	20	30	50	3			
Purpose	To familiarize the students with the Electrical Technology Practicals									
Course Outcomes										
CO1	Understand basic concepts of Network theorems									
CO 2	Deals with steady state frequency response of RLC circuit parameters solution techniques									
CO 3	Deals with introductory Single Phase Transformer practicals									
CO 4	Explains the constructional features and practicals of various types of Electrical Machines									

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Qfactor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency& Q Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.